What a Difference One Electron Makes! Generating Low-Coordinate Ti–C and V–C Multiply Bonded Frameworks through One Electron Oxidatively Induced α-Hydrogen Abstractions

Low-coordinate, high oxidation state titanium and vanadium complexes containing terminal metal–carbon multiply bonded functionalities have been prepared directly or indirectly through one electron oxidatively induced α-hydrogen abstraction reactions. This synthetic approach offers a mild entry to reactive M=C and M≡C motifs, and does not depend on external stimulants such as heat, light or base to promote the α-hydrogen-abstraction step. In addition, this strategic protocol avoids the use of powerful electrophiles, thus generating terminal and nucleophilic M–C multiple bonds in low-coordination environments. In some cases terminal alkylidenes containing β-hydrogen atoms can also be introduced through this route. This microreview surveys the synthesis and chemistry surrounding isolable titanium and vanadium complexes bearing terminal alkylidene and alkylidyne ligands. Particular emphasis will be placed on the synthesis of the high oxidation state M–C multiple bond. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

[1]  P. T. Wolczanski,et al.  PC bond cleavage of (silox)3NbPMe3 (silox = tBu3SiO) under dihydrogen leads to (silox)3Nb=CH2, (silox)3Nb=PH or (silox)3NbP(H)Nb(silox)3, and CH4. , 2006, Journal of the American Chemical Society.

[2]  Brad C. Bailey,et al.  Intermolecular C-H bond activation promoted by a titanium alkylidyne. , 2005, Journal of the American Chemical Society.

[3]  Brad C. Bailey,et al.  Intramolecular C−H Activation Reactions Derived from a Terminal Titanium Neopentylidene Functionality. Redox-Controlled 1,2-Addition and α-Hydrogen Abstraction Reactions , 2005 .

[4]  Glenn J. Sunley,et al.  Primary products and mechanistic considerations in alkane metathesis. , 2005, Journal of the American Chemical Society.

[5]  J. Herndon The chemistry of the carbon-transition metal double and triple bond: annual survey covering the year 2003 , 2005 .

[6]  K. Nomura,et al.  A Vanadium(V) Alkylidene Complex Exhibiting Remarkable Catalytic Activity for Ring-Opening Metathesis Polymerization (ROMP) , 2005 .

[7]  Brad C. Bailey,et al.  Four-Coordinate Titanium Alkylidene Complexes: Synthesis, Reactivity, and Kinetic Studies Involving the Terminal Neopentylidene Functionality , 2005 .

[8]  Michael P. Marshak,et al.  Thermodynamics, kinetics, and mechanism of (silox)3M(olefin) to (silox)3M(alkylidene) rearrangements (silox = tBu3SiO; M = Nb, Ta). , 2005, Journal of the American Chemical Society.

[9]  Brad C. Bailey,et al.  Remarkably Stable Titanium Complexes Containing Terminal Alkylidene, Phosphinidene, and Imide Functionalities , 2005 .

[10]  Glenn J. Sunley,et al.  Cross-metathesis of propane and methane: a catalytic reaction of C-C bond cleavage of a higher alkane by methane. , 2004, Angewandte Chemie.

[11]  B. Foxman,et al.  Oxidative Addition of N−C and N−H Bonds to Zerovalent Nickel, Palladium, and Platinum , 2004 .

[12]  L. Yang,et al.  Chelate-Enforced Phosphine Coordination Enables α-Abstraction to Give Zirconium Alkylidenes , 2004, Organometallics.

[13]  O. Ozerov,et al.  N−C Cleavage in Pincer PNP Complexes of Palladium , 2004 .

[14]  Brad C. Bailey,et al.  Terminal vanadium-neopentylidyne complexes and intramolecular cross-metathesis reactions to generate azametalacyclohexatrienes. , 2004, Journal of the American Chemical Society.

[15]  Xile Hu,et al.  Cationic and neutral four-coordinate alkylidene complexes of vanadium(IV) containing short V=C bonds. , 2004, Angewandte Chemie.

[16]  P. Chirik,et al.  Synthesis of a base-free titanium imido and a transient alkylidene from a titanocene dinitrogen complex. Studies on Ti=NR hydrogenation, nitrene group transfer, and comparison of 1,2-addition rates , 2004 .

[17]  Avelino Martín,et al.  Deprotonation of μ3-Methylidyne Groups on a Ti3O3 Support: A Way to Build Oxotitanocubanes Containing Alkali and Alkaline-Earth Metals , 2004 .

[18]  B. Foxman,et al.  Facile oxidative addition of N-C and N-H bonds to monovalent rhodium and iridium. , 2004, Journal of the American Chemical Society.

[19]  Brad C. Bailey,et al.  Terminal and four-coordinate vanadium(IV) phosphinidene complexes. A pseudo Jahn-Teller effect of second order stabilizing the V-P multiple bond. , 2004, Journal of the American Chemical Society.

[20]  H. Görls,et al.  α-H Elimination from Homoleptic Bis(1-aza-1,3-diene)titanium: Formation of a New Metallacyclic Titanium Alkylidene Complex† , 2004 .

[21]  B. Foxman,et al.  N-H Cleavage as a Route to Palladium Complexes of a New PNP Pincer Ligand , 2004 .

[22]  J. Herndon The chemistry of the carbon–transition metal double and triple bond: annual survey covering the year 2002 , 2004 .

[23]  J. Tomaszewski,et al.  Four-coordinate phosphinidene complexes of titanium prepared by alpha-H-migration: phospha-Staudinger and phosphaalkene-insertion reactions. , 2003, Journal of the American Chemical Society.

[24]  J. Herndon The chemistry of the carbon-transition metal double and triple bond: annual survey covering the year 2001 , 2003 .

[25]  Brad C. Bailey,et al.  Snapshots of an oxidatively induced α-hydrogen abstraction reaction to prepare a terminal and four-coordinate titanium imide , 2003 .

[26]  Brad C. Bailey,et al.  A terminal and four-coordinate titanium alkylidene prepared by oxidatively induced alpha-hydrogen abstraction. , 2003, Journal of the American Chemical Society.

[27]  J. Gracia,et al.  Intercalation of alkali metal cations into layered organotitanium oxides. , 2003, Angewandte Chemie.

[28]  A. Rouhi OLEFIN METATHESIS: BIG-DEAL REACTION , 2002 .

[29]  Susan Morrissey,et al.  ACS PARAGON SYSTEM , 2002 .

[30]  J. Severn,et al.  The Chemistry of -Diketiminatometal Complexes , 2002 .

[31]  A. Fürstner Groundbreaking Achievements in the Design of Well-Defined Metathesis Catalysts Shape Organic Synthesis , 2002 .

[32]  R. Grubbs Olefin Metathesis: A Powerful Reaction Begins to Reach Its Potential , 2002 .

[33]  R. Schrock No End in Sight for Further Uses of Metathesis Chemistry, or for Further Development , 2002 .

[34]  J. Herndon The chemistry of the carbontransition metal double and triple bond: annual survey covering the year 2000☆ , 2002 .

[35]  T. Agapie,et al.  Methine (CH) transfer via a chlorine atom abstraction/benzene-elimination strategy: molybdenum methylidyne synthesis and elaboration to a phosphaisocyanide complex. , 2002, Journal of the American Chemical Society.

[36]  R. Schrock High oxidation state multiple metal-carbon bonds. , 2002, Chemical reviews.

[37]  J. Herndon The chemistry of the carbon–transition metal double and triple bond: annual survey covering the year 1999 , 2001 .

[38]  R. Grubbs,et al.  The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. , 2001, Accounts of chemical research.

[39]  C. Cummins,et al.  Facile Synthesis of Trialkoxymolybdenum(VI) Alkylidyne Complexes for Alkyne Metathesis , 2000 .

[40]  J. Herndon The chemistry of the carbon–transition metal double and triple bond: annual survey covering the year 1998 , 2000 .

[41]  J. Herndon Applications of Carbene Complexes Toward Organic Synthesis , 2000 .

[42]  P. Gómez-Sal,et al.  Construction of Heterometallic Cubanes [{Ti3Cp(μ3‐CMe)}(μ3‐O)3{Mo(CO)3}] , 2000 .

[43]  W. M. Davis,et al.  Titanium and Zirconium Complexes That Contain the Tridentate Diamido Ligands [(i-PrN-o-C6H4)2O]2- ([i-PrNON]2-) and [(C6H11N-o-C6H4)2O]2- ([CyNON]2-) , 1999 .

[44]  C. Rizzoli,et al.  Olefin Rearrangements Assisted by a Molecular Metal−Oxo Surface: The Chemistry of Calix[4]arene Tungsten(IV) , 1999 .

[45]  J. Herndon The chemistry of the carbon-transition metal double and triple bond: annual survey covering the year 1997 , 1999 .

[46]  G. Ball,et al.  Synthesis, Structure, and Reactivity of η2-N2-Aryldiazoalkane Titanium Complexes: Cleavage of the N−N Bond , 1998 .

[47]  A. Orpen,et al.  β-Diiminato Complexes of VIII and TiIII – Formation and Structure of Stable Paramagnetic Dialkylmetal Compounds , 1998 .

[48]  H. Görls,et al.  α‐Hydrogen Elimination from (1‐Aza‐1,3‐diene)titanium Complexes: Synthesis of Metallacyclic Titanium–Alkylidene Complexes , 1998 .

[49]  R. Bergman,et al.  Synthesis of an η2-N2-Titanium Diazoalkane Complex with Both Imido- and Metal Carbene-Like Reactivity Patterns , 1998 .

[50]  I. Guzei,et al.  Selective conversion of an ethylene to an ethylidene ligand in reactions of a hydrido(ethylene) complex of tantalum with iodofluorocarbons. Molecular structure of [Ta(η5−C5H5)2(η1−CHCH3)I] , 1998 .

[51]  W. M. Davis,et al.  Synthesis and Decomposition of Alkyl Complexes of Molybdenum(IV) That Contain a [(Me3SiNCH2CH2)3N]3- Ligand. Direct Detection of α-Elimination Processes That Are More than Six Orders of Magnitude Faster than β-Elimination Processes , 1997 .

[52]  W. M. Davis,et al.  Synthesis and Decomposition of Alkyl Complexes of Tungsten(IV) That Contain a [(Me3SiNCH2CH2)3N]3- Ligand , 1997 .

[53]  N. Veldman,et al.  Titanium dichloro, bis(carbyl), aryne, and alkylidene complexes stabilized by linked cyclopentadienyl-amido auxiliary ligands , 1997 .

[54]  E. Jésus,et al.  Thermal Decomposition of [(η5‐C5Me5)TiMe3]: Synthesis and Structure of the Methylidyne Cubane [{(η5‐C5Me5)Ti}4(μ3‐CH)4] , 1997 .

[55]  A. Rheingold,et al.  Formation of a vanadium(v) bicyclic carbene–amide complexvia insertion of alkyne into a V–C bond , 1997 .

[56]  W. M. Davis,et al.  Synthetic and Mechanistic Investigations of Trimethylsilyl-Substituted Triamidoamine Complexes of Tantalum That Contain Metal−Ligand Multiple Bonds , 1996 .

[57]  M. Pfeffer,et al.  Carbon-Carbon and Carbon-Heteroatom Coupling Reactions of Metallacarbynes , 1995 .

[58]  Robert H. Grubbs,et al.  Ring-Closing Metathesis and Related Processes in Organic Synthesis , 1995 .

[59]  A. Orpen,et al.  Titanium alkylidenes via dineopentyl complexes , 1995 .

[60]  H. V. D. Heijden,et al.  Intermolecular C–H activation by reactive titanocene alkylidene intermediates , 1995 .

[61]  R. Harrison,et al.  C–H activation and nitrile insertion reactions of a cationic niobium alkylidene complex , 1995 .

[62]  A. Otero,et al.  Synthesis and Characterization of the Stable Cationic d2 Metal Acetylene Complexes [Nb(.eta.5-C5H4SiMe3)2(.eta.2(C,C)-RC.tplbond.CR')(NCMe)]+. X-ray Crystal Structures of [Nb(.eta.5-C5H4SiMe3)2(.eta.2(C,C)-MeO2CC.tplbond.CMe)(NCMe)][BPh4] and [(.eta.5-C5H4SiMe3)2(CO)Nb:C:C(CH3)(CH3)C:C:Nb(CO)(.eta.5 , 1994 .

[63]  A. Orpen,et al.  TANTALUM AND TITANIUM ALKYLIDENE COMPLEXES BEARING PHOSPHINOALKOXIDE LIGANDS. REVERSIBLE ORTHO-METALATION OF A TITANIUM ALKYLIDENE , 1994 .

[64]  A. Spek,et al.  Synthesis, Molecular Structure, and Reactivity of a Half-Sandwich Vanadium(III) Imido Complex: The First Vanadium(V) Alkylidene , 1994 .

[65]  Avelino Martín,et al.  Synthesis and Characterization of New Polynuclear Titanium(IV) Oxo Alkyls: [Cp*TiR(.mu.-O)]3 and (Cp*Ti)3R2Cl(.mu.-O)3. Thermolysis of [Cp*TiEt(.mu.-O)]3 and the Crystal Structure of the First (.mu.3-Ethylidyne)titanium Complex [Cp*Ti(.mu.-O)]3(.mu.3-CMe) , 1994 .

[66]  M. Zaworotko,et al.  The first stable zirconium alkylidene complex formed via .alpha.-hydrogen abstraction: synthesis and x-ray crystal structure of [.eta.5-C5H3-1,3-(SiMe2CH2PPri2)2]Zr:CHPh(Cl) , 1993 .

[67]  B. Hessen,et al.  ALPHA-HYDROGEN, BETA-HYDROGEN AND DELTA-HYDROGEN ABSTRACTION IN THE THERMOLYSIS OF PARAMAGNETIC VANADIUM(III) DIALKYL COMPLEXES , 1993 .

[68]  A. Spek,et al.  .alpha.-, .beta.-, and .delta.-Hydrogen abstraction in the thermolysis of paramagnetic vanadium(III) dialkyl complexes , 1993 .

[69]  C. Krüger,et al.  Synthese und Struktur eines neuen Bis[(trimethylphosphan)titanocen]‐Komplexes mit einer verbrückenden C2‐Einheit , 1992 .

[70]  A. Mayr,et al.  Recent Advances in the Chemistry of Metal-Carbon Triple Bonds , 2010 .

[71]  C. Krüger,et al.  Tetraalkoxytitanium‐Carbene Complexes with Double Intramolecular Et2Al Bridging , 1991 .

[72]  S. Lippard,et al.  Vanadium-promoted reductive coupling of carbon monoxide and facile hydrogenation to form cis-disiloxyethylenes , 1991 .

[73]  R. Schrock Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes , 1990 .

[74]  J. H. Teuben,et al.  Chemistry of Carbon Monoxide Free Cyclopentadienylvanadium(I) Alkene and Alkyne Complexes , 1990 .

[75]  J. H. Teuben,et al.  An Alkylidene Complex of Vanadium: Synthesis and Structure of Cyclopentadienyl[bis(dimethylphosphino)ethane](neopentylidene)vanadium(III) , 1989 .

[76]  J. H. Teuben,et al.  FACILE SYNTHESIS AND REACTIVITY OF CO-FREE MONOCYCLOPENTADIENYLVANADIUM(I) ALKYNE COMPLEXES , 1989 .

[77]  Robert H. Crabtree,et al.  The organometallic chemistry of the transition metals , 1992 .

[78]  M. Chisholm,et al.  Competitive carbon-carbon bond formation and cleavage and cluster formation in the reaction between 3-hexyne and hexaisopropoxyditungsten , 1986 .

[79]  N. Cooper,et al.  Conversion of cationic alkene hydride complex of tungsten into a complex containing a terminal alkylidene ligand , 1985 .

[80]  R. Schrock,et al.  Multiple metal carbon bonds. 35. A general route to tri-tert-butoxytungsten alkylidyne complexes. Scission of acetylenes by ditungsten hexa-tert-butoxide , 1985 .

[81]  M. Chisholm,et al.  ISOELECTRONIC MOLECULES WITH TRIPLE BONDS TO METAL ATOMS (M = MO, W): CRYSTAL AND MOLECULAR STRUCTURES OF TRI-TERT-BUTOXYTUNGSTEN ETHYLIDYNE AND NITRIDE , 1983 .

[82]  J. Schwartz,et al.  Synthesis of carbene complexes of Group IV metals from alkylidene-bridged heterobimetallic precursors , 1983 .

[83]  R. Schrock,et al.  Metathesis of tungsten-tungsten triple bonds with acetylenes and nitriles to give alkylidyne and nitrido complexes , 1982 .

[84]  H. Wasserman,et al.  .alpha.-Hydride elimination: the first observable equilibriums between alkylidene complexes and alkylidyne hydride complexes , 1982 .

[85]  W. A. Nugent,et al.  Electrophilic vs. nucleophilic reactivity in complexes containing multiply-bonded (alkylidene, imido or oxo) ligands. A conceptual model , 1982 .

[86]  R. Schrock,et al.  Tantalum-neopentylidene hydride and tantalum-neopentylidyne hydride complexes , 1980 .

[87]  J. B. Lee,et al.  Titanium metallacarbene-metallacyclobutane reactions: stepwise metathesis , 1980 .

[88]  J. Schwartz,et al.  The preparation of a di(cyclopentadienyl)zirconium methylene species from a phosphorane , 1980 .

[89]  R. Schrock Alkylidene complexes of niobium and tantalum , 1979 .

[90]  Melvyn Rowen Churchill,et al.  Crystal and molecular structure of a tantalum-benzylidyne complex, Ta(.eta.5-C5Me5)(CPh)(PMe3)2Cl. Evidence for a tantalum-carbon triple bond , 1979 .

[91]  Richard R. Schrock,et al.  Multiple metal-carbon bonds. 10. Thermally stable tantalum alkylidyne complexes and the crystal structure of Ta(.eta.5-C5Me5)(CPh)(PMe3)2Cl , 1978 .

[92]  G. W. Parshall,et al.  Olefin homologation with titanium methylene compounds , 1978 .

[93]  R. Schrock First isolable transition metal methylene complex and analogs. Characterization, mode of decomposition, and some simple reactions , 1975 .

[94]  R. Schrock,et al.  Tantalum carbyne complex , 1975 .

[95]  R. Grubbs,et al.  Mechanism of the olefin metathesis reaction , 1975 .

[96]  T. J. Katz,et al.  Mechanism of the olefin metathesis reaction , 1975 .

[97]  Richard R. Schrock,et al.  Alkylcarbene complex of tantalum by intramolecular .alpha.-hydrogen abstraction , 1974 .

[98]  Par Jean‐Louis Hérisson,et al.  Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques , 1971 .