Identification of non-linear influences on the seasonal ozone dose-response of sensitive and resistant clover clones using artificial neural networks

[1]  S. Krupa,et al.  Relating ambient ozone concentrations to adverse biomass responses of white clover: a case study , 1998 .

[2]  H. C. Card,et al.  Birdsong recognition using backpropagation and multivariate statistics , 1997, IEEE Trans. Signal Process..

[3]  Dominic Palmer-Brown,et al.  Modeling complex environmental data , 1997, IEEE Trans. Neural Networks.

[4]  Sorel Muresan,et al.  Multiple Linear Regression (MLR) and Neural Network (NN) calculations of some disazo dye adsorption on cellulose , 1997 .

[5]  A. Comrie Comparing Neural Networks and Regression Models for Ozone Forecasting , 1997 .

[6]  Fernando Gustavo Tomasel,et al.  Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models , 1997 .

[7]  I. Dimopoulos,et al.  Application of neural networks to modelling nonlinear relationships in ecology , 1996 .

[8]  D. Palmer-Brown,et al.  Investigating microclimatic influences on ozone injury in clover (Trifolium subterraneum) using artificial neural networks , 1996 .

[9]  A. M. Oudshoff,et al.  The BB Neural Network Rule Extraction Method , 1995, SNN Symposium on Neural Networks.

[10]  J. Fuhrer Critical level for ozone to protect agricultural crops: Interaction with water availability , 1995 .

[11]  L. Skärby,et al.  Ozone and drought stress — Interactive effects on the growth and physiology of Norway spruce (Picea abies (L.) Karst.) , 1995 .

[12]  J. Rebbeck,et al.  Response of a white clover indicator system to tropospheric ozone at eight locations in the United States , 1995 .

[13]  Barry M. Wise,et al.  A comparison of neural networks, non-linear biased regression and a genetic algorithm for dynamic model identification , 1995 .

[14]  D. Palmer-Brown,et al.  Towards unravelling the complex interactions between microclimate, ozone dose, and ozone injury in clover , 1995 .

[15]  R. Leuning A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants , 1995 .

[16]  F. Meinzer,et al.  Regulation of transpiration in coffee hedgerows: covariation of environmental variables and apparent responses of stomata to wind and humidity , 1994 .

[17]  Jude W. Shavlik,et al.  Using Sampling and Queries to Extract Rules from Trained Neural Networks , 1994, ICML.

[18]  Masayuki Hirafuji,et al.  Chaos of Plant Growth under Changing Environment , 1994 .

[19]  G. Kerstiens,et al.  DRY DEPOSITION AND CUTICULAR UPTAKE OF POLLUTANT GASES , 1992 .

[20]  A. Heagle,et al.  Adaptation of a white clover population to ozone stress. , 1991, The New phytologist.

[21]  Fred E. Smeins,et al.  Predicting grassland community changes with an artificial neural network model , 1996 .

[22]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[23]  Phil F. Culverhouse,et al.  Biological pattern recognition by neural networks , 1991 .

[24]  P. Jarvis,et al.  Do stomata respond to relative humidity , 1991 .

[25]  C. Miller Effect of Temperature on Stomatal Conductance and Ozone Injury of Pinto Bean Leaves , 1981 .