(3+1)D hydrodynamic simulation of relativistic heavy-ion collisions

We present music, an implementation of the Kurganov-Tadmor algorithm for relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios. This Riemann-solver-free, second-order, high-resolution scheme is characterized by a very small numerical viscosity and its ability to treat shocks and discontinuities very well. We also incorporate a sophisticated algorithm for the determination of the freeze-out surface using a three dimensional triangulation of the hypersurface. Implementing a recent lattice based equation of state, we compute ${p}_{T}$-spectra and pseudorapidity distributions for Au+Au collisions at $\sqrt{s}=200 \mathrm{GeV}$ and present results for the anisotropic flow coefficients ${v}_{2}$ and ${v}_{4}$ as a function of both ${p}_{T}$ and pseudorapidity $\ensuremath{\eta}$. We were able to determine ${v}_{4}$ with high numerical precision, finding that it does not strongly depend on the choice of initial condition or equation of state.

[1]  P. Carruthers HERETICAL MODELS OF PARTICLE PRODUCTION * , 1974 .

[2]  M. Luzum,et al.  Conformal relativistic viscous hydrodynamics: Applications to RHIC results at s NN =200 GeV , 2008, 0804.4015.

[3]  T. Kodama,et al.  Smoothed particle hydrodynamics for relativistic heavy-ion collisions , 2000, hep-ph/0006239.

[4]  W. Greiner,et al.  Three-component fluid dynamics for the description of energetic heavy-ion reactions , 1982 .

[5]  Fred Cooper,et al.  Single-particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production , 1974 .

[6]  Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions , 2005, nucl-th/0511046.

[7]  Space-time evolution of bulk QCD matter , 2006, nucl-th/0607018.

[8]  (3+1)-dimensional relativistic hydrodynamical expansion of hot and dense matter in ultra-relativistic nuclear collision , 2000, hep-ph/0007187.

[9]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[10]  Numerical analysis of a two-pion correlation function based on a hydrodynamical model , 1999, nucl-th/9906037.

[11]  Joachim A. Maruhn,et al.  Relativistic hydrodynamics for heavy-ion collisions. I. General aspects and expansion into vacuum☆ , 1995 .

[12]  Hydrodynamics of nuclear collisions with initial conditions from perturbative QCD , 1997, nucl-th/9705015.

[13]  Tetsufumi Hirano Is early thermalization achieved only near midrapidity in Au + Au collisions at s NN = 130 GeV ? , 2001 .

[14]  S. Jeon,et al.  MARTINI : An event generator for relativistic heavy-ion collisions , 2009, 0909.2037.

[15]  P. Petreczky,et al.  QCD Equation of State and Hadron Resonance Gas , 2009, 0912.2541.

[16]  Amelin,et al.  Transverse flow and collectivity in ultrarelativistic heavy-ion collisions. , 1991, Physical review letters.

[17]  J. Lauret,et al.  Flow at the SPS and RHIC as a quark-gluon plasma signature. , 2000, Physical review letters.

[18]  Collective dynamics in highly relativistic heavy-ion collisions , 1998, nucl-th/9806003.

[19]  K. Shigaki,et al.  Identified charged particle spectra and yields in Au + Au collisions at √sNN = 200 GeV , 2004 .

[20]  S. Z. Belen'kii,et al.  Гидродинамическая теория множественного образования частиц , 1955 .

[21]  M D Baker,et al.  Significance of the fragmentation region in ultrarelativistic heavy-ion collisions. , 2003, Physical review letters.

[22]  Hans Christian Öttinger,et al.  General projection operator formalism for the dynamics and thermodynamics of complex fluids , 1998 .

[23]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[24]  U. Heinz,et al.  Is there a low-pT “anomaly” in the pion momentum spectra from relativistic nuclear collisions? , 1991 .

[25]  M. Kataja,et al.  Coupling of longitudinal and transverse flows in the hydrodynamics of ultrarelativistic nuclear collisions , 1994 .

[26]  U. Heinz,et al.  Suppression of elliptic flow in a minimally viscous quark-gluon plasma , 2007, 0709.0742.

[27]  Azimuthal anisotropy: the higher harmonics , 2004, nucl-ex/0403019.

[28]  D. Strottman,et al.  Relativistic hydrodynamics and heavy ion reactions , 1986 .

[29]  James D. Bjorken,et al.  Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region , 1983 .

[30]  P. Bożek,et al.  Rapid hydrodynamic expansion in relativistic heavy-ion collisions , 2009, 0902.4121.

[31]  D. Srivastava,et al.  Hydrodynamics of Ultra-Relativistic Heavy Ion Collisions. Considerations of Boost Non-invariance and Stopping , 1993 .

[32]  S. Voloshin,et al.  Radial and elliptic flow at RHIC: Further predictions , 2001, hep-ph/0101136.

[33]  P. Romatschke,et al.  Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC? , 2007, Physical review letters.

[34]  Second-order dissipative fluid dynamics for ultrarelativistic nuclear collisions. , 2001, Physical review letters.

[35]  L. D. Landau,et al.  Hydrodynamic theory of multiple production of particles , 1956 .

[36]  U. Heinz,et al.  Mass ordering of differential elliptic flow and its violation for {phi} mesons , 2007, 0710.5795.

[37]  K. Tuominen,et al.  Centrality dependence of multiplicity, transverse energy, and elliptic flow from hydrodynamics , 2001, hep-ph/0103234.

[38]  Ishii,et al.  Hydrodynamical-model analysis of the (3+1)-dimensional cylindrically symmetric baryon-rich quark-gluon plasma with phase transition. , 1992, Physical Review D, Particles and fields.

[39]  K. Friedrichs Symmetric hyperbolic linear differential equations , 1954 .

[40]  Results of the hydrodynamics approach to heavy ion collisions , 2002, nucl-th/0210024.

[41]  Hiscock,et al.  Generic instabilities in first-order dissipative relativistic fluid theories. , 1985, Physical review. D, Particles and fields.

[42]  E. Saridakis,et al.  Exact hydrodynamic solution for the elliptic flow , 2009, 0906.0941.

[43]  U. Heinz,et al.  Dissipative hydrodynamics for viscous relativistic fluids , 2005, nucl-th/0510014.

[44]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[45]  D. Srivastava,et al.  Boost non-invariant hydrodynamics in ultrarelativistic heavy-ion collisions , 1992 .

[46]  E. al.,et al.  Charged meson rapidity distributions in central Au+Au collisions at s(NN)**(1/2) = 200-GeV , 2004, nucl-ex/0403050.

[47]  Momentum spectra, anisotropic flow, and ideal fluids , 2005, nucl-th/0506045.

[48]  P. Huovinen Anisotropy of flow and the order of phase transition in relativistic heavy ion collisions , 2005, nucl-th/0505036.

[49]  W. Israel Nonstationary irreversible thermodynamics: A Causal relativistic theory , 1976 .

[50]  C. Greiner,et al.  Shear viscosity and out of equilibrium dynamics , 2008, 0812.2762.

[51]  THIRD FLOW COMPONENT AS QGP SIGNAL , 1999, nucl-th/9908034.

[52]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[53]  Anisotropic transverse flow and the quark-hadron phase transition , 2000, hep-ph/0006129.

[54]  K. Dusling,et al.  Simulating elliptic flow with viscous hydrodynamics , 2007, 0710.5932.

[55]  Hydrodynamical Description of 200 A GeV/c S+Au Collisions: Hadron and Electromagnetic Spectra , 1996, nucl-th/9607029.

[56]  Peter Steinberg,et al.  Glauber Modeling in High Energy Nuclear Collisions , 2007, nucl-ex/0701025.

[57]  L. Lindblom,et al.  Stability and causality in dissipative relativistic fluids , 1983 .

[58]  U. Heinz,et al.  The influence of resonance decays on the pT spectra from heavy-ion collisions , 1990 .

[59]  Causal theories of dissipative relativistic fluid dynamics for nuclear collisions , 2003, nucl-th/0309055.

[60]  Werner Israel,et al.  Transient relativistic thermodynamics and kinetic theory , 1979 .

[61]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[62]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[63]  Baker,et al.  Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at √ s NN = 200 GeV , 2004, nucl-ex/0407012.

[64]  R. Naidoo,et al.  Application of the Kurganov-Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms , 2004, Future Gener. Comput. Syst..

[65]  I. Montvay,et al.  Gauge Field Thermodynamics for the SU(2) Yang-Mills System , 1982 .

[66]  R. Hwa,et al.  Quark-Gluon Plasma 3 , 2004 .

[67]  Relativistic Hydrodynamics for Heavy--Ion Collisions -- II. Compression of Nuclear Matter and the Phase Transition to the Quark--Gluon Plasma , 1995, nucl-th/9504021.

[68]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[69]  Variable Energy Cyclotron Centre , 2007 .

[70]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[71]  Elliptic flow at SPS and RHIC: From kinetic transport to hydrodynamics , 2000, hep-ph/0012137.

[72]  Hydrodynamic Models for Heavy Ion Collisions , 2006, nucl-th/0605008.

[73]  Huichao Song,et al.  Multiplicity scaling in ideal and viscous hydrodynamics , 2008, 0805.1756.

[74]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[75]  K. Eskola,et al.  Predictions for low-pT and high-pT hadron spectra in nearly central Pb+Pb collisions at sqrt[sNN]=5.5 TeV tested at sqrt[sNN]=130 and 200 GeV , 2005 .

[76]  Eric F Darve,et al.  Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .