Recursive Extended Least Squares Parameter Estimation for Wiener Nonlinear Systems with Moving Average Noises

Many control algorithms are based on the mathematical models of dynamic systems. System identification is used to determine the structures and parameters of dynamic systems. Some identification algorithms (e.g., the least squares algorithm) can be applied to estimate the parameters of linear regressive systems or linear-parameter systems with white noise disturbances. This paper derives two recursive extended least squares parameter estimation algorithms for Wiener nonlinear systems with moving average noises based on over-parameterization models. The simulation results indicate that the proposed algorithms are effective.

[1]  Feng Ding,et al.  Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique , 2011, Comput. Math. Appl..

[2]  Feng Ding,et al.  Hierarchical least-squares based iterative identification for multivariable systems with moving average noises , 2010, Math. Comput. Model..

[3]  Junhong Li,et al.  Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration , 2013, Appl. Math. Lett..

[4]  Yong Zhang,et al.  Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods , 2011, Math. Comput. Model..

[5]  Hu Yuanbiao Iterative and recursive least squares estimation algorithms for moving average systems , 2013 .

[6]  Y. Liu,et al.  Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems , 2012, J. Syst. Control. Eng..

[7]  Yuanbiao Hu,et al.  Iterative and recursive least squares estimation algorithms for moving average systems , 2013, Simul. Model. Pract. Theory.

[8]  J. Chu,et al.  Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle , 2013 .

[9]  F. Ding Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling , 2013 .

[10]  Junxia Ma,et al.  An iterative numerical algorithm for modeling a class of Wiener nonlinear systems , 2013, Appl. Math. Lett..

[11]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[12]  Huazhen Fang,et al.  Kalman filter-based identification for systems with randomly missing measurements in a network environment , 2010, Int. J. Control.

[13]  Rui Ding,et al.  Iterative Parameter Estimation for a Class of Multivariable Systems Based on the Hierarchical Identification Principle and the Gradient Search , 2012, Circuits Syst. Signal Process..

[14]  Feng Ding,et al.  Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems , 2012, Math. Comput. Model..

[15]  Feng Ding,et al.  Hierarchical Least Squares Identification for Linear SISO Systems With Dual-Rate Sampled-Data , 2011, IEEE Transactions on Automatic Control.

[16]  M. Dehghan,et al.  Fourth‐order variants of Newton's method without second derivatives for solving non‐linear equations , 2012 .

[17]  M. Dehghan,et al.  Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations , 2011 .

[18]  F. Ding,et al.  Newton iterative identification for a class of output nonlinear systems with moving average noises , 2013 .

[19]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[20]  F. Ding Coupled-least-squares identification for multivariable systems , 2013 .

[21]  Guoliang Wei,et al.  H∞ filtering for uncertain time‐varying systems with multiple randomly occurred nonlinearities and successive packet dropouts , 2011 .

[22]  Huiping Li,et al.  Robust H∞ filtering for nonlinear stochastic systems with uncertainties and Markov delays , 2012, Autom..

[23]  Ruifeng Ding,et al.  Iterative identification algorithm for Wiener nonlinear systems using the Newton method , 2013 .

[24]  Jie Ding,et al.  Bias compensation‐based parameter estimation for output error moving average systems , 2011 .

[25]  Feng Ding,et al.  Performance analysis of the auxiliary model-based least-squares identification algorithm for one-step state-delay systems , 2012, Int. J. Comput. Math..

[26]  Feng Ding,et al.  Hierarchical Least Squares Estimation Algorithm for Hammerstein–Wiener Systems , 2012, IEEE Signal Processing Letters.

[27]  D N Vizireanu,et al.  Simple, fast and accurate eight points amplitude estimation method of sinusoidal signals for DSP based instrumentation , 2012 .

[28]  Jie Sheng,et al.  Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems , 2010, Comput. Math. Appl..

[29]  Mehdi Dehghan,et al.  SSHI methods for solving general linear matrix equations , 2011 .

[30]  Feng Ding,et al.  Decomposition based fast least squares algorithm for output error systems , 2013, Signal Process..

[31]  Yong Zhang,et al.  Bias compensation methods for stochastic systems with colored noise , 2011 .

[32]  Feng Ding,et al.  Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems , 2011, Comput. Math. Appl..

[33]  Yang Shi,et al.  Output Feedback Stabilization of Networked Control Systems With Random Delays Modeled by Markov Chains , 2009, IEEE Transactions on Automatic Control.

[34]  D. Wang Brief paper: Lleast squares-based recursive and iterative estimation for output error moving average systems using data filtering , 2011 .

[35]  Silviu Ciochina,et al.  An improved spectral subtraction method for speech enhancement using a perceptual weighting filter , 2008, Digit. Signal Process..

[36]  Simona Halunga,et al.  Nonlinear spectral subtraction method for colored noise reduction using multi-band Bark scale , 2008, Signal Process..

[37]  Mehdi Dehghan,et al.  Two algorithms for finding the Hermitian reflexive and skew-Hermitian solutions of Sylvester matrix equations , 2011, Appl. Math. Lett..

[38]  Feng Ding,et al.  Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems , 2008, Comput. Math. Appl..

[39]  F. Ding Two-stage least squares based iterative estimation algorithm for CARARMA system modeling ☆ , 2013 .

[40]  Ruifeng Ding,et al.  Parameter and State Estimation Algorithm for a State Space Model with a One-unit State Delay , 2013, Circuits Syst. Signal Process..

[41]  Zidong Wang,et al.  Sampled‐data H∞ filtering for stochastic genetic regulatory networks , 2011 .

[42]  Feng Ding,et al.  Recursive Relations of the Cost Functions for the Least-Squares Algorithms for Multivariable Systems , 2013, Circuits Syst. Signal Process..

[43]  Feng Ding,et al.  Least squares estimation for a class of non-uniformly sampled systems based on the hierarchical identification principle , 2012, Circuits Syst. Signal Process..

[44]  Mehdi Dehghan,et al.  Iterative algorithms for the generalized centro‐symmetric and central anti‐symmetric solutions of general coupled matrix equations , 2012 .

[45]  Feng Ding,et al.  A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems , 2010, Digit. Signal Process..

[46]  Feng Ding,et al.  Performance Analysis of the Auxiliary Model-Based Stochastic Gradient Parameter Estimation Algorithm for State-Space Systems with One-Step State Delay , 2013, Circuits Syst. Signal Process..

[47]  Tongwen Chen,et al.  Optimal design of multichannel transmultiplexers with stopband energy and passband magnitude constraints , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[48]  Feng Ding,et al.  Least squares based and gradient based iterative identification for Wiener nonlinear systems , 2011, Signal Process..

[49]  Ruifeng Ding,et al.  Iterative parameter identification methods for nonlinear functions , 2012 .

[50]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[51]  Bo Yu,et al.  Robust mixed H2/H∞ control of networked control systems with random time delays in both forward and backward communication links , 2011, Autom..

[52]  Feng Ding,et al.  Self-tuning control based on multi-innovation stochastic gradient parameter estimation , 2009, Syst. Control. Lett..