Create Nanoscale Patterns with DNA Origami.

Structural deoxyribonucleic acid (DNA) nanotechnology offers a robust platform for diverse nanoscale shapes that can be used in various applications. Among a wide variety of DNA assembly strategies, DNA origami is the most robust one in constructing custom nanoshapes and exquisite patterns. In this account, the static structural and functional patterns assembled on DNA origami are reviewed, as well as the reconfigurable assembled architectures regulated through dynamic DNA nanotechnology. The fast progress of dynamic DNA origami nanotechnology facilitates the construction of reconfigurable patterns, which can further be used in many applications such as optical/plasmonic sensors, nanophotonic devices, and nanorobotics for numerous different tasks.

[1]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[2]  N C Seeman,et al.  Three-arm nucleic acid junctions are flexible. , 1986, Nucleic acids research.

[3]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[4]  N C Seeman,et al.  Assembly and characterization of five-arm and six-arm DNA branched junctions. , 1991, Biochemistry.

[5]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[6]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[7]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[8]  J. Reif,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[9]  Prabal K Maiti,et al.  The stability of Seeman JX DNA topoisomers of paranemic crossover (PX) molecules as a function of crossover number. , 2004, Nucleic acids research.

[10]  William M. Shih,et al.  A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron , 2004, Nature.

[11]  E. Winfree,et al.  Algorithmic Self-Assembly of DNA Sierpinski Triangles , 2004, PLoS biology.

[12]  N. Seeman,et al.  Paranemic crossover DNA: a generalized Holliday structure with applications in nanotechnology. , 2004, Journal of the American Chemical Society.

[13]  A. Turberfield,et al.  Engineering a 2D protein-DNA crystal. , 2005, Angewandte Chemie.

[14]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[15]  A Paul Alivisatos,et al.  Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. , 2006, Nano letters.

[16]  Nadrian C Seeman,et al.  Assembly and characterization of 8-arm and 12-arm DNA branched junctions. , 2007, Journal of the American Chemical Society.

[17]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[18]  A. Woolley,et al.  DNA shadow nanolithography. , 2007, Small.

[19]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[20]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[21]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.

[22]  Päivi Törmä,et al.  DNA origami as a nanoscale template for protein assembly , 2009, Nanotechnology.

[23]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[24]  Erik Winfree,et al.  An information-bearing seed for nucleating algorithmic self-assembly , 2009, Proceedings of the National Academy of Sciences.

[25]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[26]  Matthew J. Patitz,et al.  Self-assembly of discrete self-similar fractals , 2009, Natural Computing.

[27]  Jie Chao,et al.  Dynamic Patterning Programmed by DNA Tiles Captured on a DNA Origami Substrate , 2009, Nature nanotechnology.

[28]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[29]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[30]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[31]  David R. Liu,et al.  Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker , 2010, Nature nanotechnology.

[32]  Lei Wang,et al.  Molecular behavior of DNA origami in higher-order self-assembly. , 2010, Journal of the American Chemical Society.

[33]  Hao Yan,et al.  DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. , 2010, Angewandte Chemie.

[34]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[35]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[36]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[37]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[38]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[39]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[40]  M. Komiyama,et al.  Stepwise and reversible nanopatterning of proteins on a DNA origami scaffold. , 2010, Chemical communications.

[41]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[42]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[43]  Antti-Pekka Eskelinen,et al.  Assembly of single-walled carbon nanotubes on DNA-origami templates through streptavidin-biotin interaction. , 2011, Small.

[44]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[45]  Marco Lazzarino,et al.  A revertible, autonomous, self-assembled DNA-origami nanoactuator. , 2011, Nano letters.

[46]  Peter Nordlander,et al.  Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. , 2011, Nano letters.

[47]  F. Simmel,et al.  DNA origami-based nanoribbons: assembly, length distribution, and twist , 2011, Nanotechnology.

[48]  Shichao Zhao,et al.  Molecular lithography through DNA-mediated etching and masking of SiO2. , 2011, Journal of the American Chemical Society.

[49]  P. Rothemund,et al.  Programmable molecular recognition based on the geometry of DNA nanostructures. , 2011, Nature chemistry.

[50]  H. Sugiyama,et al.  Programmed Two-dimensional Self- Assembly of Multiple Dna Origami Jigsaw Pieces Keywords: Dna Origami · Programmed 2d Self-assembly · Jigsaw Pieces · Nanotechnology · Fast-scanning Atomic Force Microscopy , 2022 .

[51]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[52]  M. Komiyama,et al.  Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy , 2011, Nature communications.

[53]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[54]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[55]  Philip Tinnefeld,et al.  Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. , 2011, Journal of the American Chemical Society.

[56]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[57]  Baoquan Ding,et al.  Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. , 2012, Journal of the American Chemical Society.

[58]  Hao Yan,et al.  DNA origami with double-stranded DNA as a unified scaffold. , 2012, ACS nano.

[59]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[60]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[61]  J. Chao,et al.  Folding super-sized DNA origami with scaffold strands from long-range PCR. , 2012, Chemical communications.

[62]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[63]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[64]  Hao Yan,et al.  Reconfigurable DNA origami to generate quasifractal patterns. , 2012, Nano letters.

[65]  Yangyang Yang,et al.  Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. , 2012, Journal of the American Chemical Society.

[66]  A. C. Pearson,et al.  DNA origami metallized site specifically to form electrically conductive nanowires. , 2012, The journal of physical chemistry. B.

[67]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[68]  E. Winfree,et al.  Robust self-replication of combinatorial information via crystal growth and scission , 2012, Proceedings of the National Academy of Sciences.

[69]  Haitao Liu,et al.  DNA nanostructure meets nanofabrication. , 2013, Chemical Society reviews.

[70]  Qiao Jiang,et al.  Three-dimensional plasmonic chiral tetramers assembled by DNA origami. , 2013, Nano letters.

[71]  Zhong Jin,et al.  Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning , 2013, Nature Communications.

[72]  F. Besenbacher,et al.  Self-assembly of DNA origami and single-stranded tile structures at room temperature. , 2013, Angewandte Chemie.

[73]  Adrian Keller,et al.  DNA Origami Substrates for Highly Sensitive Surface-Enhanced Raman Scattering , 2013 .

[74]  Dongsheng Liu,et al.  Regulation of an enzyme cascade reaction by a DNA machine. , 2013, Small.

[75]  Hao Yan,et al.  DNA Gridiron Nanostructures Based on Four-Arm Junctions , 2013, Science.

[76]  Yi Lu,et al.  Nano-encrypted Morse code: a versatile approach to programmable and reversible nanoscale assembly and disassembly. , 2013, Journal of the American Chemical Society.

[77]  Weihai Ni,et al.  Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. , 2013, Journal of the American Chemical Society.

[78]  Wei Sun,et al.  Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates. , 2013, Journal of the American Chemical Society.

[79]  Hiroyuki Asanuma,et al.  Light-driven DNA nanomachine with a photoresponsive molecular engine. , 2014, Accounts of chemical research.

[80]  Friedrich C Simmel,et al.  Single molecule characterization of DNA binding and strand displacement reactions on lithographic DNA origami microarrays. , 2014, Nano letters.

[81]  Keiyu Ou,et al.  DNA origami based visualization system for studying site-specific recombination events. , 2014, Journal of the American Chemical Society.

[82]  Tim Liedl,et al.  Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. , 2014, Nano letters.

[83]  Akinori Kuzuya,et al.  Precise structure control of three-state nanomechanical DNA origami devices. , 2014, Methods.

[84]  F. Simmel,et al.  Surface-assisted large-scale ordering of DNA origami tiles. , 2014, Angewandte Chemie.

[85]  Paul W K Rothemund,et al.  Erratum: Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion , 2014, Nature Communications.

[86]  Tao Zhang,et al.  Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. , 2013, Nature nanotechnology.

[87]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[88]  A. Kuzyk,et al.  Helical nanostructures based on DNA self-assembly. , 2014, Nanoscale.

[89]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[90]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[91]  Luvena L. Ong,et al.  DNA Brick Crystals with Prescribed Depth , 2014, Nature chemistry.

[92]  T. LaBean,et al.  Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. , 2013, Nano letters.

[93]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[94]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[95]  Veikko Linko,et al.  Custom-shaped metal nanostructures based on DNA origami silhouettes. , 2015, Nanoscale.

[96]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[97]  Hai-Jun Su,et al.  Direct design of an energy landscape with bistable DNA origami mechanisms. , 2015, Nano letters.

[98]  H. Xin,et al.  Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. , 2015, Nature nanotechnology.

[99]  Lei Liu,et al.  Routing of individual polymers in designed patterns. , 2015, Nature nanotechnology.

[100]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[101]  Hao Yan,et al.  Complex wireframe DNA origami nanostructures with multi-arm junction vertices. , 2015, Nature nanotechnology.

[102]  Friedrich C. Simmel,et al.  Membrane-Assisted Growth of DNA Origami Nanostructure Arrays , 2015, ACS nano.

[103]  Philip Tinnefeld,et al.  DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM. , 2015, Nano letters.

[104]  Piotr J Cywinski,et al.  Ion-selective formation of a guanine quadruplex on DNA origami structures. , 2014, Angewandte Chemie.

[105]  H. Sugiyama,et al.  Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures , 2015, Nature Communications.

[106]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[107]  Na Liu,et al.  A plasmonic nanorod that walks on DNA origami , 2015, Nature Communications.

[108]  Na Liu,et al.  Optically Resolving the Dynamic Walking of a Plasmonic Walker Couple. , 2015, Nano letters.

[109]  Philip Mair,et al.  Programming Light-Harvesting Efficiency Using DNA Origami , 2016, Nano letters.

[110]  Tim Liedl,et al.  Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp , 2016, Science.

[111]  H. Dietz,et al.  Uncovering the forces between nucleosomes using DNA origami , 2016, Science Advances.

[112]  Na Liu,et al.  A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function , 2016, Nature Communications.

[113]  Baoquan Ding,et al.  Plasmonic Toroidal Metamolecules Assembled by DNA Origami. , 2016, Journal of the American Chemical Society.

[114]  Andreas Walther,et al.  3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly. , 2016, Nano letters.

[115]  Peng Yin,et al.  Optical visualisation of individual biomolecules in densely packed clusters , 2016 .

[116]  Oleg Gang,et al.  Self-organized architectures from assorted DNA-framed nanoparticles. , 2016, Nature chemistry.

[117]  Wolfgang Pfeifer,et al.  From Nano to Macro through Hierarchical Self‐Assembly: The DNA Paradigm , 2016, Chembiochem : a European journal of chemical biology.

[118]  H. Dietz,et al.  Placing molecules with Bohr radius resolution using DNA origami. , 2016, Nature nanotechnology.

[119]  Z. Li,et al.  Nanoscale patterning of self-assembled monolayers using DNA nanostructure templates. , 2016, Chemical communications.

[120]  Raluca Tiron,et al.  DNA Origami Mask for Sub-Ten-Nanometer Lithography. , 2016, ACS nano.

[121]  Jing Pan,et al.  Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts. , 2016, ACS nano.

[122]  Stefan Facsko,et al.  Temperature-Dependent Charge Transport through Individually Contacted DNA Origami-Based Au Nanowires. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[123]  P. Rothemund,et al.  Engineering and mapping nanocavity emission via precision placement of DNA origami , 2016, Nature.

[124]  Itamar Willner,et al.  pH-Stimulated Reconfiguration and Structural Isomerization of Origami Dimer and Trimer Systems. , 2016, Nano letters.

[125]  S. Howorka,et al.  Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays. , 2016, Small.

[126]  Adrian Keller,et al.  Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks. , 2016, ACS applied materials & interfaces.

[127]  Travis A. Meyer,et al.  Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator , 2016, Nature Communications.

[128]  Hendrik Dietz,et al.  Nanoscale rotary apparatus formed from tight-fitting 3D DNA components , 2016, Science Advances.

[129]  Johannes B. Woehrstein,et al.  Quantitative Super-Resolution Imaging with qPAINT using Transient Binding Analysis , 2016, Nature Methods.

[130]  Huilin Li,et al.  Diamond family of nanoparticle superlattices , 2016, Science.

[131]  F. Simmel,et al.  Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch. , 2016, ACS nano.

[132]  Victor Pan,et al.  The Beauty and Utility of DNA Origami , 2017 .

[133]  Hendrik Dietz,et al.  Gigadalton-scale shape-programmable DNA assemblies , 2017, Nature.

[134]  I. Willner,et al.  Chiroplasmonic DNA-based nanostructures , 2017 .

[135]  Jiashu Sun,et al.  Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami. , 2017, Nano letters.

[136]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[137]  Wei Li,et al.  A cargo-sorting DNA robot , 2017, Science.

[138]  Lulu Qian,et al.  Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns , 2017, Nature.

[139]  Casey Grun,et al.  Programmable self-assembly of three-dimensional nanostructures from 104 unique components , 2017, Nature.

[140]  Na Liu,et al.  Selective control of reconfigurable chiral plasmonic metamolecules , 2017, Science Advances.

[141]  Lulu Qian,et al.  Programmable disorder in random DNA tilings. , 2017, Nature nanotechnology.

[142]  B. Abel,et al.  Nanoscale patterning of self-assembled monolayer (SAM)-functionalised substrates with single molecule contact printing. , 2017, Nanoscale.

[143]  Jie Song,et al.  Reconfiguration of DNA molecular arrays driven by information relay , 2017, Science.

[144]  Baoquan Ding,et al.  Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod. , 2017, ACS nano.

[145]  Ebbe Sloth Andersen,et al.  Control of enzyme reactions by a reconfigurable DNA nanovault , 2017, Nature Communications.

[146]  Friedrich C Simmel,et al.  A self-assembled nanoscale robotic arm controlled by electric fields , 2018, Science.

[147]  H. Sugiyama,et al.  Complexing DNA Origami Frameworks through Sequential Self-Assembly Based on Directed Docking. , 2018, Angewandte Chemie.

[148]  Hao Yan,et al.  Complex silica composite nanomaterials templated with DNA origami , 2018, Nature.

[149]  Robert C. Davis,et al.  Four-Point Probe Electrical Measurements on Templated Gold Nanowires Formed on Single DNA Origami Tiles. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[150]  Ralf Jungmann,et al.  DNA Origami Route for Nanophotonics , 2018, ACS photonics.

[151]  D. Cui,et al.  Novel insights into the selection to electron's spin of chiral structure , 2018, Nano Energy.

[152]  Veikko Linko,et al.  Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems , 2018, International journal of molecular sciences.

[153]  Carlos E Castro,et al.  Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers , 2018, Nature Communications.

[154]  Jeffrey Kelling,et al.  DNA-Mold Templated Assembly of Conductive Gold Nanowires. , 2018, Nano letters.

[155]  C. Kielar,et al.  Pharmacophore Nanoarrays on DNA Origami Substrates as a Single-Molecule Assay for Fragment-Based Drug Discovery. , 2018, Angewandte Chemie.

[156]  Minh-Kha Nguyen,et al.  A DNA Origami-Based Chiral Plasmonic Sensing Device. , 2018, ACS applied materials & interfaces.

[157]  Baoquan Ding,et al.  DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering. , 2018, Angewandte Chemie.

[158]  Tim Liedl,et al.  DNA-Assembled Advanced Plasmonic Architectures. , 2018, Chemical reviews.

[159]  Timon Funck,et al.  Sensing Picomolar Concentrations of RNA Using Switchable Plasmonic Chirality. , 2018, Angewandte Chemie.

[160]  Lulu Qian,et al.  Information-based autonomous reconfiguration in systems of interacting DNA nanostructures , 2018, Nature Communications.

[161]  Hao Yan,et al.  Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat , 2018, Nature Nanotechnology.

[162]  Jie Chao,et al.  Solving mazes with single-molecule DNA navigators , 2018, Nature Materials.

[163]  Haitao Liu,et al.  Graphene-Encapsulated DNA Nanostructure: Preservation of Topographic Features at High Temperature and Site-Specific Oxidation of Graphene. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[164]  Na Liu,et al.  Gold nanocrystal-mediated sliding of doublet DNA origami filaments , 2018, Nature Communications.

[165]  Adrian Keller,et al.  Dynamics of DNA Origami Lattice Formation at Solid-Liquid Interfaces. , 2018, ACS applied materials & interfaces.

[166]  Pascal Lill,et al.  Hierarchical Assembly of DNA Filaments with Designer Elastic Properties. , 2017, ACS nano.

[167]  Hao Yan,et al.  DNA-Guided Plasmonic Helix with Switchable Chirality , 2018, Journal of the American Chemical Society.

[168]  Victor Pan,et al.  Design and operation of reconfigurable two-dimensional DNA molecular arrays , 2018, Nature Protocols.

[169]  Veikko Linko,et al.  Plasmonic nanostructures through DNA-assisted lithography , 2018, Science Advances.

[170]  Room Temperature Study of Seeding Growth on Two-Dimensional DNA Nanostructure. , 2019, Langmuir : the ACS journal of surfaces and colloids.