Nonexistence of global weak solutions to semilinear wave equations involving time-dependent structural damping terms
暂无分享,去创建一个
A. Laadhari | M. Kirane | S. Kerbal | A. Fino
[1] Ahmad Z. Fino,et al. Blow-up of solutions to semilinear wave equations with a time-dependent strong damping , 2021, Evolution Equations & Control Theory.
[2] T. Dao,et al. Blow‐up results for a semi‐linear structural damped wave model with nonlinear memory , 2020, Mathematische Nachrichten.
[3] A. Fino. Finite Time Blow-Up for Wave Equations with Strong Damping in an Exterior Domain , 2018, Mediterranean Journal of Mathematics.
[4] J. Vázquez,et al. Quantitative local and global a priori estimates for fractional nonlinear diffusion equations , 2012, 1210.2594.
[5] Michael Reissig,et al. Semilinear structural damped waves , 2012, 1209.3204.
[6] G. Karch,et al. Decay of mass for nonlinear equation with fractional Laplacian , 2008, 0812.4977.
[7] Yi Zhou. Blow Up of Solutions to Semilinear Wave Equations with Critical Exponent in High Dimensions* , 2007 .
[8] Qi S. Zhang,et al. Finite time blow up for critical wave equations in high dimensions , 2004, math/0404055.
[9] S. Lucente,et al. Nonlinear Liouville theorems for Grushin and Tricomi operators , 2003 .
[10] Qi S. Zhang. A blow-up result for a nonlinear wave equation with damping: The critical case , 2001 .
[11] Walter A. Strauss,et al. Nonlinear scattering theory at low energy , 1981 .
[12] F. John. Blow-up of solutions of nonlinear wave equations in three space dimensions , 1979, Proceedings of the National Academy of Sciences of the United States of America.
[13] Yuta Wakasugi. On the diffusive structure for the damped wave equation with variable coefficients , 2014 .
[14] M. Kirane,et al. Qualitative properties of solutions to a time-space fractional evolution equation , 2012 .
[15] Société de mathématiques appliquées et industrielles,et al. Introduction aux problèmes d'évolution semi-linéaires , 1990 .