Nonexistence of global weak solutions to semilinear wave equations involving time-dependent structural damping terms

We consider a semilinear wave equation involving a time-dependent structural damping term of the form $\displaystyle\frac{1}{{(1+t)}^{\beta}}(-\Delta)^{\sigma/2} u_t$. Our results show the influence of the parameters $\beta,\sigma$ on the nonexistence of global weak solutions under assumptions on the given system data.

[1]  Ahmad Z. Fino,et al.  Blow-up of solutions to semilinear wave equations with a time-dependent strong damping , 2021, Evolution Equations & Control Theory.

[2]  T. Dao,et al.  Blow‐up results for a semi‐linear structural damped wave model with nonlinear memory , 2020, Mathematische Nachrichten.

[3]  A. Fino Finite Time Blow-Up for Wave Equations with Strong Damping in an Exterior Domain , 2018, Mediterranean Journal of Mathematics.

[4]  J. Vázquez,et al.  Quantitative local and global a priori estimates for fractional nonlinear diffusion equations , 2012, 1210.2594.

[5]  Michael Reissig,et al.  Semilinear structural damped waves , 2012, 1209.3204.

[6]  G. Karch,et al.  Decay of mass for nonlinear equation with fractional Laplacian , 2008, 0812.4977.

[7]  Yi Zhou Blow Up of Solutions to Semilinear Wave Equations with Critical Exponent in High Dimensions* , 2007 .

[8]  Qi S. Zhang,et al.  Finite time blow up for critical wave equations in high dimensions , 2004, math/0404055.

[9]  S. Lucente,et al.  Nonlinear Liouville theorems for Grushin and Tricomi operators , 2003 .

[10]  Qi S. Zhang A blow-up result for a nonlinear wave equation with damping: The critical case , 2001 .

[11]  Walter A. Strauss,et al.  Nonlinear scattering theory at low energy , 1981 .

[12]  F. John Blow-up of solutions of nonlinear wave equations in three space dimensions , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Yuta Wakasugi On the diffusive structure for the damped wave equation with variable coefficients , 2014 .

[14]  M. Kirane,et al.  Qualitative properties of solutions to a time-space fractional evolution equation , 2012 .

[15]  Société de mathématiques appliquées et industrielles,et al.  Introduction aux problèmes d'évolution semi-linéaires , 1990 .