Controllable Shifts in Threshold Voltage of Top‐Gate Polymer Field‐Effect Transistors for Applications in Organic Nano Floating Gate Memory

Organic field-effect transistor (FET) memory is an emerging technology with the potential to realize light-weight, low-cost, flexible charge storage media. Here, solution-processed poly[9,9-dioctylfluorenyl-2,7-diyl]-co-(bithiophene)] (F8T2) nano floating gate memory (NFGM) with a top-gate/bottom-contact device configuration is reported. A reversible shift in the threshold voltage (V Th ) and reliable memory characteristics was achieved by the incorporation of thin Au nanoparticles (NPs) as charge storage sites for negative charges (electrons) at the interface between polystyrene and cross-linked poly(4-vinylphenol). The F8T2 NFGM showed relatively high field-effect mobility (μ FET ) (0.02 cm 2 V -1 s -1 ) for an amorphous semiconducting polymer with a large memory window (ca. 30 V), a high on/off ratio (more than 10 4 ) during writing and erasing with an operation voltage of 80 V of gate bias in a relatively short timescale (less than 1 s), and a retention time of a few hours. This top-gated polymer NFGM could be used as an organic transistor memory element for organic flash memory.

[1]  G. K. Ackers,et al.  Hydrogen exchange measurement of the free energy of structural and allosteric change in hemoglobin. , 1992, Science.

[2]  Hyun-Yong Lee,et al.  Organic Non‐Volatile Memory Based on Pentacene Field‐Effect Transistors Using a Polymeric Gate Electret , 2006 .

[3]  Michael A. Haase,et al.  Pentacene-based radio-frequency identification circuitry , 2003 .

[4]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[5]  Koon Gee Neoh,et al.  Polymer electronic memories: Materials, devices and mechanisms , 2008 .

[6]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[7]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[8]  C. Pearson,et al.  Hybrid silicon-organic nanoparticle memory device , 2003 .

[9]  S. Lim,et al.  Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics , 2007 .

[10]  Rahul Sarpeshkar,et al.  Organic field-effect transistors with polarizable gate insulators , 2002 .

[11]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[12]  H. Sirringhaus,et al.  A gate dielectric that enables high ambipolar mobilities in polymer light-emitting field-effect transistors , 2008 .

[13]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[14]  Zhenan Bao,et al.  Highly ordered vacuum‐deposited thin films of metallophthalocyanines and their applications in field‐effect transistors , 1997 .

[15]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[16]  C. Yoon,et al.  Formation of gold nanoparticles embedded in a polyimide film for nanofloating gate memory , 2007 .

[17]  Roberto Bez,et al.  Introduction to flash memory , 2003, Proc. IEEE.

[18]  A. Yassar,et al.  All-Polymer Field-Effect Transistor Realized by Printing Techniques , 1994, Science.

[19]  H. Sirringhaus,et al.  A quantitative analytical model for static dipolar disorder broadening of the density of states at organic heterointerfaces. , 2008, The Journal of chemical physics.

[20]  Ying Wang,et al.  High‐Performance Organic Field‐Effect Transistors with Low‐Cost Copper Electrodes , 2008 .

[21]  Yi Su,et al.  Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric , 2006, IEEE Transactions on Nanotechnology.

[22]  Shinuk Cho,et al.  Perfluorocyclobutane containing polymeric gate dielectric for organic thin film transistors with high on/off ratio , 2006 .

[23]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[24]  Juhwan Kim,et al.  Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography , 2008 .

[25]  Yang Yang,et al.  Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells , 2005 .

[26]  Raoul Schroeder,et al.  All‐Organic Permanent Memory Transistor Using an Amorphous, Spin‐Cast Ferroelectric‐like Gate Insulator , 2004 .

[27]  Henning Sirringhaus,et al.  Analysis of the contact resistance in staggered, top-gate organic field-effect transistors , 2007 .

[28]  T. Shimoda,et al.  Control of carrier density by self-assembled monolayers in organic field-effect transistors , 2004, Nature materials.

[29]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[30]  Yong-Young Noh,et al.  Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance , 2005 .

[31]  Ananth Dodabalapur,et al.  Organic and polymer transistors for electronics , 2006 .

[32]  Yang Yang,et al.  Polyaniline nanofiber/gold nanoparticle nonvolatile memory. , 2005, Nano letters.

[33]  Tobin J Marks,et al.  Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. , 2005, Journal of the American Chemical Society.

[34]  Wi Hyoung Lee,et al.  Effects of metal penetration into organic semiconductors on the electrical properties of organic thin film transistors , 2006 .

[35]  Yong-Young Noh,et al.  Downscaling of self-aligned, all-printed polymer thin-film transistors. , 2007, Nature nanotechnology.

[36]  Gerwin Gelinck,et al.  Semiconductor electronics: Trapped fast at the gate , 2007, Nature.

[37]  Gerwin H. Gelinck,et al.  High-performance solution-processed polymer ferroelectric field-effect transistors , 2005 .

[38]  Yong-Young Noh,et al.  Polarity Effects of Polymer Gate Electrets on Non‐Volatile Organic Field‐Effect Transistor Memory , 2008 .

[39]  John A. Rogers,et al.  Printable organic and polymeric semiconducting materials and devices , 1999 .

[40]  Ananth Dodabalapur,et al.  Non‐Volatile Organic Memory Applications Enabled by In Situ Synthesis of Gold Nanoparticles in a Self‐Assembled Block Copolymer , 2008 .

[41]  K. Im,et al.  Electrical characteristics of gold nanoparticle-embedded MIS capacitors with parylene gate dielectric , 2008 .

[42]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[43]  T. Abdallah,et al.  Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique , 2008 .

[44]  S. Bauer,et al.  Nonvolatile organic field-effect transistor memory element with a polymeric gate electret , 2004 .

[45]  Yong-Young Noh,et al.  High-photosensitivity p-channel organic phototransistors based on a biphenyl end-capped fused bithiophene oligomer , 2005 .

[46]  Zhenan Bao,et al.  Electronic sensing of vapors with organic transistors , 2001 .

[47]  S. Möller,et al.  A polymer/semiconductor write-once read-many-times memory , 2003, Nature.

[48]  Zhenan Bao,et al.  Organic thin film transistors , 2004 .

[49]  Janos Veres,et al.  Gate Insulators in Organic Field-Effect Transistors , 2004 .