Metal–Organic Frameworks for Separation

Separation is an important industrial step with critical roles in the chemical, petrochemical, pharmaceutical, and nuclear industries, as well as in many other fields. Although much progress has been made, the development of better separation technologies, especially through the discovery of high‐performance separation materials, continues to attract increasing interest due to concerns over factors such as efficiency, health and environmental impacts, and the cost of existing methods. Metal–organic frameworks (MOFs), a rapidly expanding family of crystalline porous materials, have shown great promise to address various separation challenges due to their well‐defined pore size and unprecedented tunability in both composition and pore geometry. In the past decade, extensive research is performed on applications of MOF materials, including separation and capture of many gases and vapors, and liquid‐phase separation involving both liquid mixtures and solutions. MOFs also bring new opportunities in enantioselective separation and are amenable to morphological control such as fabrication of membranes for enhanced separation outcomes. Here, some of the latest progress in the applications of MOFs for several key separation issues, with emphasis on newly synthesized MOF materials and the impact of their compositional and structural features on separation properties, are reviewed and highlighted.

[1]  R. Krishna,et al.  An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity , 2017, Advanced materials.

[2]  X. Li,et al.  Metal-organic frameworks based membranes for liquid separation. , 2017, Chemical Society reviews.

[3]  Xiu‐Ping Yan,et al.  A Chiral Metal-Organic Material that Enables Enantiomeric Identification and Purification , 2017 .

[4]  Yujie Ban,et al.  Microstructural Engineering and Architectural Design of Metal–Organic Framework Membranes , 2017, Advanced materials.

[5]  Jinping Li,et al.  A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water. , 2017, ACS applied materials & interfaces.

[6]  Qiang Xu,et al.  Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. , 2017, Chemical Society reviews.

[7]  Xiao-Ming Chen,et al.  Controlling guest conformation for efficient purification of butadiene , 2017, Science.

[8]  Ashlee J Howarth,et al.  Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. , 2017, Chemical Society reviews.

[9]  Ayalew H. Assen,et al.  Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. , 2017, Chemical Society reviews.

[10]  C. Serre,et al.  The new age of MOFs and of their porous-related solids. , 2017, Chemical Society reviews.

[11]  R. Zhou,et al.  Exceptional Perrhenate/Pertechnetate Uptake and Subsequent Immobilization by a Low-Dimensional Cationic Coordination Polymer: Overcoming the Hofmeister Bias Selectivity , 2017 .

[12]  Yuguang Ma,et al.  CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. , 2017, Chemical reviews.

[13]  R. Krishna,et al.  Screening metal-organic frameworks for separation of pentane isomers. , 2017, Physical chemistry chemical physics : PCCP.

[14]  D. Roca‐Sanjuán,et al.  Peptide Metal-Organic Frameworks for Enantioselective Separation of Chiral Drugs. , 2017, Journal of the American Chemical Society.

[15]  Donghun Kim,et al.  Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets , 2017, Nature.

[16]  S. Du,et al.  Rare earth separations by selective borate crystallization , 2017, Nature Communications.

[17]  M. Hirscher,et al.  Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites , 2017, Nature Communications.

[18]  O. Yaghi,et al.  The atom, the molecule, and the covalent organic framework , 2017, Science.

[19]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[20]  K. M. Gupta,et al.  Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation , 2017, Nature Communications.

[21]  Seth M. Cohen The Postsynthetic Renaissance in Porous Solids. , 2017, Journal of the American Chemical Society.

[22]  Min Liu,et al.  Surface-mounted MOF templated fabrication of homochiral polymer thin film for enantioselective adsorption of drugs. , 2017, Chemical communications.

[23]  Dong‐sheng Li,et al.  Pore Space Partition in Metal-Organic Frameworks. , 2017, Accounts of chemical research.

[24]  Sean P. Collins,et al.  Ultralow Parasitic Energy for Postcombustion CO2 Capture Realized in a Nickel Isonicotinate Metal-Organic Framework with Excellent Moisture Stability. , 2017, Journal of the American Chemical Society.

[25]  Qiang Xu,et al.  Metal-Organic Frameworks for Energy Applications , 2017 .

[26]  Kang Li,et al.  Novel Organic‐Dehydration Membranes Prepared from Zirconium Metal‐Organic Frameworks , 2017 .

[27]  L. Daemen,et al.  An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials , 2016, Nature Communications.

[28]  M. Schweiger,et al.  Removal of Pertechnetate-Related Oxyanions from Solution Using Functionalized Hierarchical Porous Frameworks. , 2016, Chemistry.

[29]  R. Krishna,et al.  Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures , 2016 .

[30]  E. Miner,et al.  Metal-organic frameworks: Evolved oxygen evolution catalysts , 2016, Nature Energy.

[31]  Tony Pham,et al.  Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials , 2016 .

[32]  Seth M. Cohen,et al.  Metal–organic frameworks for membrane-based separations , 2016 .

[33]  S. Qiu,et al.  Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations , 2016 .

[34]  Yuanjing Cui,et al.  Emerging Multifunctional Metal–Organic Framework Materials , 2016, Advanced materials.

[35]  A. J. Blake,et al.  Selective Adsorption of Sulfur Dioxide in a Robust Metal–Organic Framework Material , 2016, Advanced materials.

[36]  M. Hirscher,et al.  Quantum sieving for separation of hydrogen isotopes using MOFs , 2016 .

[37]  Tony Pham,et al.  Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2. , 2016, Angewandte Chemie.

[38]  Yue-jian Lin,et al.  Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule. , 2016, Journal of the American Chemical Society.

[39]  Z. Nie,et al.  Zirconium-Based Metal-Organic Framework for Removal of Perrhenate from Water. , 2016, Inorganic chemistry.

[40]  J. Long,et al.  Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. , 2016, Nature materials.

[41]  Yi Luo,et al.  Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. , 2016, Angewandte Chemie.

[42]  T. Akita,et al.  Metal‐Organic Framework‐Derived Honeycomb‐Like Open Porous Nanostructures as Precious‐Metal‐Free Catalysts for Highly Efficient Oxygen Electroreduction , 2016, Advanced materials.

[43]  A. Cooper,et al.  Porous organic cages: soluble, modular and molecular pores , 2016 .

[44]  Xiu‐Ping Yan,et al.  Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation , 2016, Nature Communications.

[45]  Jerry Y. S. Lin Molecular sieves for gas separation , 2016, Science.

[46]  M. Eddaoudi,et al.  A metal-organic framework–based splitter for separating propylene from propane , 2016, Science.

[47]  Qiang Xu,et al.  Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. , 2016, Nature chemistry.

[48]  Maciej Haranczyk,et al.  Metal–organic framework with optimally selective xenon adsorption and separation , 2016, Nature Communications.

[49]  V. Valtchev,et al.  Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2. , 2016, Journal of the American Chemical Society.

[50]  Jian Zhang,et al.  Chiral chemistry of metal-camphorate frameworks. , 2016, Chemical Society reviews.

[51]  W. Gong,et al.  Chiral DHIP-Based Metal-Organic Frameworks for Enantioselective Recognition and Separation. , 2016, Inorganic chemistry.

[52]  Rajamani Krishna,et al.  Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene , 2016, Science.

[53]  M. Schweiger,et al.  Removal of TcO4(-) ions from solution: materials and future outlook. , 2016, Chemical Society reviews.

[54]  Jared B. DeCoste,et al.  Extraordinary NO2 Removal by the Metal-Organic Framework UiO-66-NH2. , 2016, Angewandte Chemie.

[55]  Ming Li,et al.  Highly Stable Zr(IV)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. , 2016, Journal of the American Chemical Society.

[56]  Ryan P. Lively,et al.  Seven chemical separations to change the world , 2016, Nature.

[57]  J. Long,et al.  Reversible CO Scavenging via Adsorbate-Dependent Spin State Transitions in an Iron(II)-Triazolate Metal-Organic Framework. , 2016, Journal of the American Chemical Society.

[58]  Chongli Zhong,et al.  Enhancing CO2 adsorption and separation ability of Zr(IV)-based metal–organic frameworks through ligand functionalization under the guidance of the quantitative structure–property relationship model , 2016 .

[59]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[60]  Naixin Wang,et al.  Oriented Nano–Microstructure‐Assisted Controllable Fabrication of Metal–Organic Framework Membranes on Nickel Foam , 2016, Advanced materials.

[61]  P. Feng,et al.  Systematic and Dramatic Tuning on Gas Sorption Performance in Heterometallic Metal-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[62]  W. Zhou,et al.  Metal-Organic Frameworks as Platforms for Functional Materials. , 2016, Accounts of chemical research.

[63]  Nicolaas A. Vermeulen,et al.  CD-MOF: A Versatile Separation Medium. , 2016, Journal of the American Chemical Society.

[64]  S. Oliver,et al.  Reversible, Selective Trapping of Perchlorate from Water in Record Capacity by a Cationic Metal-Organic Framework. , 2016, Environmental science & technology.

[65]  Xin Wu,et al.  Liquid-phase epitaxial growth of a homochiral MOF thin film on poly(L-DOPA) functionalized substrate for improved enantiomer separation. , 2016, Chemical communications.

[66]  Zhengjie Li,et al.  Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture. , 2015, Angewandte Chemie.

[67]  L. Wojtas,et al.  Synthesis of a Chiral Crystal Form of MOF-5, CMOF-5, by Chiral Induction. , 2015, Journal of the American Chemical Society.

[68]  Ayalew H. Assen,et al.  Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. , 2015, Angewandte Chemie.

[69]  D. Jiang,et al.  Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. , 2015, Nature chemistry.

[70]  Wei‐Xiong Zhang,et al.  Efficient purification of ethene by an ethane-trapping metal-organic framework , 2015, Nature Communications.

[71]  Thanh Huu Nguyen,et al.  CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate , 2015, Science.

[72]  Tony Pham,et al.  Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas. , 2015, Chemical communications.

[73]  Qichun Zhang,et al.  Surfactants as Promising Media for the Preparation of Crystalline Inorganic Materials. , 2015, Angewandte Chemie.

[74]  C. Serre,et al.  Isolation of Renewable Phenolics by Adsorption on Ultrastable Hydrophobic MIL-140 Metal-Organic Frameworks. , 2015, ChemSusChem.

[75]  S. Kitagawa Porous Materials and the Age of Gas. , 2015, Angewandte Chemie.

[76]  Amy J. Cairns,et al.  A facile solvent-free synthesis route for the assembly of a highly CO2 selective and H2S tolerant NiSIFSIX metal-organic framework. , 2015, Chemical communications.

[77]  Seth M. Cohen,et al.  In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix Membranes. , 2015, Angewandte Chemie.

[78]  Wei Xia,et al.  Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion , 2015 .

[79]  R. Krishna Methodologies for evaluation of metal–organic frameworks in separation applications , 2015 .

[80]  R. Krishna,et al.  Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures , 2015, Nature Communications.

[81]  Xiao Feng,et al.  Chirality from substitution: enantiomer separation via a modified metal–organic framework , 2015 .

[82]  G. Ying,et al.  Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. , 2015, Environmental science & technology.

[83]  Junmei Zhao,et al.  An ionic liquid-based synergistic extraction strategy for rare earths , 2015 .

[84]  Sheng Dai,et al.  Water desalination using nanoporous single-layer graphene. , 2015, Nature nanotechnology.

[85]  S. Han,et al.  Exceptional CO2 working capacity in a heterodiamine-grafted metal–organic framework , 2015, Chemical science.

[86]  Huwei Liu,et al.  Planar Mn4O cluster homochiral metal-organic framework for HPLC separation of pharmaceutically important (±)-ibuprofen racemate. , 2015, Inorganic chemistry.

[87]  Zebao Rui,et al.  Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas , 2015 .

[88]  J. Caro,et al.  Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. , 2015, Angewandte Chemie.

[89]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[90]  Amy J. Cairns,et al.  Potential of metal-organic frameworks for separation of xenon and krypton. , 2015, Accounts of chemical research.

[91]  Banglin Chen,et al.  Immobilization of Ag(i) into a metal-organic framework with -SO3H sites for highly selective olefin-paraffin separation at room temperature. , 2015, Chemical communications.

[92]  P. Feng,et al.  Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. , 2015, Journal of the American Chemical Society.

[93]  S. Dai,et al.  Porous liquids: a promising class of media for gas separation. , 2015, Angewandte Chemie.

[94]  Dorina F. Sava,et al.  Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. , 2015, Chemical Society reviews.

[95]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[96]  C. Tang,et al.  Supramolecular binding and separation of hydrocarbons within a functionalized porous metal-organic framework. , 2015, Nature chemistry.

[97]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[98]  C. Serre,et al.  A Complete Separation of Hexane Isomers by a Functionalized Flexible Metal Organic Framework , 2014 .

[99]  Li-Chiang Lin,et al.  Evaluating different classes of porous materials for carbon capture , 2014 .

[100]  A. Cooper,et al.  Separation of rare gases and chiral molecules by selective binding in porous organic cages. , 2014, Nature materials.

[101]  Guojun Zhang,et al.  Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes. , 2014, Angewandte Chemie.

[102]  Ming Li,et al.  Tuning CO₂ selective adsorption over N₂ and CH₄ in UiO-67 analogues through ligand functionalization. , 2014, Inorganic chemistry.

[103]  P. F. Martin,et al.  A Two-Column Method for the Separation of Kr and Xe from Process Off-Gases , 2014 .

[104]  H. García,et al.  Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. , 2014, Chemical Society reviews.

[105]  G. Shimizu,et al.  MOFs as proton conductors--challenges and opportunities. , 2014, Chemical Society reviews.

[106]  Wenbin Lin,et al.  Metal-organic frameworks for artificial photosynthesis and photocatalysis. , 2014, Chemical Society reviews.

[107]  Dirk De Vos,et al.  Adsorptive separation on metal-organic frameworks in the liquid phase. , 2014, Chemical Society reviews.

[108]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society reviews.

[109]  S. Qiu,et al.  Metal-organic framework membranes: from synthesis to separation application. , 2014, Chemical Society reviews.

[110]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[111]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[112]  J. Navarro,et al.  Toxic gas removal--metal-organic frameworks for the capture and degradation of toxic gases and vapours. , 2014, Chemical Society reviews.

[113]  M. Allendorf,et al.  MOF-based electronic and opto-electronic devices. , 2014, Chemical Society reviews.

[114]  Craig M. Brown,et al.  Reversible CO binding enables tunable CO/H₂ and CO/N₂ separations in metal-organic frameworks with exposed divalent metal cations. , 2014, Journal of the American Chemical Society.

[115]  Yan Liu,et al.  Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation , 2014, Nature Communications.

[116]  P. F. Martin,et al.  Fluorocarbon adsorption in hierarchical porous frameworks , 2014, Nature Communications.

[117]  Amy J. Cairns,et al.  Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture , 2014, Nature Communications.

[118]  Jun Liu,et al.  Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. , 2014, Journal of the American Chemical Society.

[119]  B. Li,et al.  Microporous metal-organic frameworks for gas separation. , 2014, Chemistry, an Asian journal.

[120]  M. Allendorf,et al.  Noble Gas Adsorption in Metal–Organic Frameworks Containing Open Metal Sites , 2014 .

[121]  S. Sakaki,et al.  Self-Accelerating CO Sorption in a Soft Nanoporous Crystal , 2014, Science.

[122]  M. Hirscher,et al.  Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: direct measurement and theoretical analysis. , 2014, ACS nano.

[123]  J. Long,et al.  Hydrocarbon Separations in Metal–Organic Frameworks , 2014 .

[124]  Y. Chabal,et al.  Mechanism of Preferential Adsorption of SO2 into Two Microporous Paddle Wheel Frameworks M(bdc)(ted)0.5 , 2013, 1310.7094.

[125]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[126]  Cheng Wang,et al.  Metal-organic frameworks as a tunable platform for designing functional molecular materials. , 2013, Journal of the American Chemical Society.

[127]  B. Freeman,et al.  Energy-efficient polymeric gas separation membranes for a sustainable future: A review , 2013 .

[128]  P. Feng,et al.  Selective anion exchange with nanogated isoreticular positive metal-organic frameworks , 2013, Nature Communications.

[129]  Chongli Zhong,et al.  Development of computational methodologies for metal-organic frameworks and their application in gas separations. , 2013, Chemical reviews.

[130]  Jarad A. Mason,et al.  Highly selective quantum sieving of D2 from H2 by a metal-organic framework as determined by gas manometry and infrared spectroscopy. , 2013, Journal of the American Chemical Society.

[131]  S. Kitagawa,et al.  Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. , 2013, Accounts of chemical research.

[132]  Rajamani Krishna,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013, Science.

[133]  Shubin Liu,et al.  Highly porous and stable metal–organic frameworks for uranium extraction , 2013 .

[134]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[135]  Kimoon Kim,et al.  Proton conduction in metal-organic frameworks and related modularly built porous solids. , 2013, Angewandte Chemie.

[136]  Perla B. Balbuena,et al.  Porous materials with pre-designed single-molecule traps for CO2 selective adsorption , 2013, Nature Communications.

[137]  M. Hirscher,et al.  Quantum cryo-sieving for hydrogen isotope separation in microporous frameworks: an experimental study on the correlation between effective quantum sieving and pore size , 2013 .

[138]  D. Vos,et al.  Gas separation: Trapdoors in zeolites. , 2013 .

[139]  M. Hirscher,et al.  MFU‐4 – A Metal‐Organic Framework for Highly Effective H2/D2 Separation , 2013, Advanced materials.

[140]  Gangfeng Ouyang,et al.  A porous coordination framework for highly sensitive and selective solid-phase microextraction of non-polar volatile organic compounds , 2013 .

[141]  Gang Li,et al.  Discriminative separation of gases by a "molecular trapdoor" mechanism in chabazite zeolites. , 2012, Journal of the American Chemical Society.

[142]  A. J. Blake,et al.  Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. , 2012, Nature chemistry.

[143]  J. Caro,et al.  Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance. , 2012, Angewandte Chemie.

[144]  Rui‐Biao Lin,et al.  Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws. , 2012, Journal of the American Chemical Society.

[145]  Mario Wriedt,et al.  Low-energy selective capture of carbon dioxide by a pre-designed elastic single-molecule trap. , 2012, Angewandte Chemie.

[146]  Rajamani Krishna,et al.  Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons , 2012 .

[147]  Xuebo Zhao,et al.  Quantum sieving: feasibility and challenges for the separation of hydrogen isotopes in nanoporous materials , 2012 .

[148]  P. Thallapally,et al.  Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[149]  R. Krishna,et al.  Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions , 2012, Nature Communications.

[150]  D. Vos,et al.  Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal–Organic Framework MIL-53(Fe) , 2012 .

[151]  D. Hobbs,et al.  Selectivity, Kinetics, and Efficiency of Reversible Anion Exchange with TcO4− in a Supertetrahedral Cationic Framework , 2012 .

[152]  C. Wilmer,et al.  Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks , 2012 .

[153]  P. Thallapally,et al.  Switching Kr/Xe selectivity with temperature in a metal-organic framework. , 2012, Journal of the American Chemical Society.

[154]  R. Krishna,et al.  Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules. , 2012, Journal of the American Chemical Society.

[155]  Jian Tian,et al.  Selective CO2 Capture from Flue Gas Using Metal–Organic Frameworks―A Fixed Bed Study , 2012 .

[156]  Jeffrey R. Long,et al.  Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). , 2012, Journal of the American Chemical Society.

[157]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[158]  Zhijuan Zhang,et al.  A Calcium Coordination Framework Having Permanent Porosity and High CO2/N2 Selectivity , 2012 .

[159]  Xiu‐Ping Yan,et al.  Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. , 2012, Accounts of chemical research.

[160]  S. Nguyen,et al.  High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. , 2012, Angewandte Chemie.

[161]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[162]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[163]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[164]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[165]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[166]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[167]  J. Grate,et al.  Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal. , 2012, Chemical communications.

[168]  Qiang Xu,et al.  Mesoporous Metal‐Organic Frameworks with Size‐tunable Cages: Selective CO2 Uptake, Encapsulation of Ln3+ Cations for Luminescence, and Column‐Chromatographic Dye Separation , 2011, Advanced materials.

[169]  S. Deng,et al.  Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[170]  D. D’Alessandro,et al.  Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri , 2011 .

[171]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[172]  Perla B. Balbuena,et al.  Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks , 2011 .

[173]  F. Kapteijn,et al.  Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. , 2011, Chemistry.

[174]  L. Broadbelt,et al.  Computational screening of metal-organic frameworks for xenon/krypton separation , 2011 .

[175]  K. Thomas,et al.  Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. , 2011, Nature communications.

[176]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[177]  T. Vlugt,et al.  Performance of chiral zeolites for enantiomeric separation revealed by molecular simulation , 2010 .

[178]  F. Kapteijn,et al.  Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. , 2010, Journal of the American Chemical Society.

[179]  J. F. Stoddart,et al.  Chromatography in a single metal-organic framework (MOF) crystal. , 2010, Journal of the American Chemical Society.

[180]  Fan Zuo,et al.  Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. , 2010, Journal of the American Chemical Society.

[181]  J. Long,et al.  A novel microporous MOF with the capability of selective adsorption of xylenes. , 2010, Chemical communications.

[182]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[183]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[184]  C. Serre,et al.  Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption. , 2010, Angewandte Chemie.

[185]  R. Morris,et al.  Induction of chiral porous solids containing only achiral building blocks. , 2010, Nature chemistry.

[186]  M. Kanatzidis,et al.  Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide. , 2010, Nature chemistry.

[187]  P. Feng,et al.  A tale of three carboxylates: cooperative asymmetric crystallization of a three-dimensional microporous framework from achiral precursors. , 2010, Angewandte Chemie.

[188]  Xiu‐Ping Yan,et al.  Adsorption and Separation of Xylene Isomers and Ethylbenzene on Two Zn−Terephthalate Metal−Organic Frameworks , 2010 .

[189]  Y. Hwang,et al.  Adsorptive Separation of Propylene and Propane on a Porous Metal-Organic Framework, Copper Trimesate , 2010 .

[190]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[191]  A. Rodrigues,et al.  Adsorption of propane, propylene and isobutane on a metal–organic framework: Molecular simulation and experiment , 2009 .

[192]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[193]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[194]  Michael J Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[195]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[196]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[197]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[198]  P. Feng,et al.  Homochiral crystallization of microporous framework materials from achiral precursors by chiral catalysis. , 2008, Journal of the American Chemical Society.

[199]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[200]  L. Robeson,et al.  The upper bound revisited , 2008 .

[201]  Adriano Zecchina,et al.  Role of exposed metal sites in hydrogen storage in MOFs. , 2008, Journal of the American Chemical Society.

[202]  H. Noguchi,et al.  Quantum sieving effect of three-dimensional Cu-based organic framework for H2 and D2. , 2008, Journal of the American Chemical Society.

[203]  Kunlun Hong,et al.  Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. , 2008, Journal of the American Chemical Society.

[204]  Young Moo Lee,et al.  Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions , 2007, Science.

[205]  M. A. van der Veen,et al.  Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. , 2007, Angewandte Chemie.

[206]  Molecular modeling of chiral-modified zeolite HY employed in enantioselective separation. , 2007, Chirality.

[207]  A. Rodrigues,et al.  Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal-organic framework. , 2007, The journal of physical chemistry. B.

[208]  Mohamed Eddaoudi,et al.  Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. , 2007, Angewandte Chemie.

[209]  A. J. Blake,et al.  Twelve-connected porous metal-organic frameworks with high H(2) adsorption. , 2007, Chemical communications.

[210]  A. Fletcher,et al.  High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. , 2007, Journal of the American Chemical Society.

[211]  A. J. Blake,et al.  High H2 adsorption by coordination-framework materials. , 2006, Angewandte Chemie.

[212]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[213]  Chengdu Liang,et al.  A microporous metal-organic framework for gas-chromatographic separation of alkanes. , 2006, Angewandte Chemie.

[214]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[215]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[216]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[217]  Y. S. Lin,et al.  Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers. , 2004, Journal of the American Chemical Society.

[218]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[219]  R. Baker Future directions of membrane gas separation technology , 2002 .

[220]  Michael Tsapatsis,et al.  A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules , 2001, Nature.

[221]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[222]  Y. Aoyama,et al.  Helical Coordination Polymers from Achiral Components in Crystals. Homochiral Crystallization, Homochiral Helix Winding in the Solid State, and Chirality Control by Seeding , 1999 .

[223]  R. Eldridge,et al.  Olefin/Paraffin Separations by Reactive Absorption: A Review , 1998 .

[224]  K. Thomas,et al.  Adsorption of gases on a carbon molecular sieve used for air separation: Linear adsorptives as probes for kinetic selectivity , 1998 .

[225]  Ibrahim M. Banat,et al.  Microbial decolorization of textile-dye-containing effluents A review , 1996 .

[226]  J.J.M. Beenakker,et al.  Molecular transport in subnanometer pores: zero-point energy, reduced dimensionality and quantum sieving , 1995 .

[227]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[228]  Jay Myls Stuart Henis,et al.  A Novel Approach to Gas Separations Using Composite Hollow Fiber Membranes , 1980 .