Crossover effects of transition metal ions in high-voltage lithium metal batteries

[1]  H. Xiong,et al.  Carbon dots crosslinked gel polymer electrolytes for dendrite‐free and long‐cycle lithium metal batteries , 2022, SmartMat.

[2]  Yijin Liu,et al.  Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V , 2022, Nature Energy.

[3]  Xiaodi Ren,et al.  Intrinsic Nonflammable Ether Electrolytes for Ultrahigh-Voltage Lithium Metal Batteries Enabled by Chlorine Functionality. , 2022, Angewandte Chemie.

[4]  Zhenan Bao,et al.  Rational solvent molecule tuning for high-performance lithium metal battery electrolytes , 2022, Nature Energy.

[5]  A. Manthiram,et al.  Insights into the Crossover Effects in Cells with High‐Nickel Layered Oxide Cathodes and Silicon/Graphite Composite Anodes , 2022 .

[6]  Haijun Yu,et al.  Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries , 2021 .

[7]  Jeremiah A. Johnson,et al.  Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte , 2021, Nature Energy.

[8]  A. Manthiram,et al.  Crossover Effects in Batteries with High‐Nickel Cathodes and Lithium‐Metal Anodes , 2021, Advanced Functional Materials.

[9]  M. Winter,et al.  Understanding the Outstanding High‐Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte , 2021, Advanced Energy Materials.

[10]  Shuru Chen,et al.  Pressure-tailored lithium deposition and dissolution in lithium metal batteries , 2020, Nature Energy.

[11]  Shichun Yang,et al.  Perspective on solid‐electrolyte interphase regulation for lithium metal batteries , 2020, SmartMat.

[12]  A. Manthiram,et al.  Proton-Induced Disproportionation of Jahn-Teller-Active Transition-Metal Ions in Oxides Due to Electronically Driven Lattice Instability. , 2020, Journal of the American Chemical Society.

[13]  I. Bloom,et al.  Systematic Study of the Cathode Compositional Dependency of Cross-Talk Behavior in Li-Ion Battery , 2020 .

[14]  H. Gasteiger,et al.  A Comparative Study of Structural Changes during Long-Term Cycling of NCM-811 at Ambient and Elevated Temperatures , 2020, Journal of The Electrochemical Society.

[15]  Junliang Zhang,et al.  Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between −40 and 60 °C , 2020, Advanced Energy Materials.

[16]  Evan M. Erickson,et al.  High-nickel layered oxide cathodes for lithium-based automotive batteries , 2020 .

[17]  Xiaodi Ren,et al.  Enabling Stable Lithium Metal Anode through Electrochemical Kinetics Manipulation , 2019, Advanced Functional Materials.

[18]  J. Dahn,et al.  Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte , 2019, Nature Energy.

[19]  Jiecai Han,et al.  Recent Development in Separators for High-Temperature Lithium-Ion Batteries. , 2019, Small.

[20]  Hongkyung Lee,et al.  Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions , 2019, Joule.

[21]  Jie Zhu,et al.  Suppressing Nickel Dissolution in Ni‐rich Layered Oxide Cathodes Using NiF 2 as Electrolyte Additive , 2019, ChemElectroChem.

[22]  Zonghai Chen,et al.  Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes , 2019, Nature Energy.

[23]  Jun Lu,et al.  Bridging the academic and industrial metrics for next-generation practical batteries , 2019, Nature Nanotechnology.

[24]  Im Doo Jung,et al.  Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure , 2018, Nano Energy.

[25]  K. Amine,et al.  Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries , 2018, Nature Nanotechnology.

[26]  Ji‐Guang Zhang,et al.  Stable cycling of high-voltage lithium metal batteries in ether electrolytes , 2018, Nature Energy.

[27]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[28]  Martin Winter,et al.  Unraveling transition metal dissolution of Li 1.04 Ni 1/3 Co 1/3 Mn 1/3 O 2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique , 2016 .

[29]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[30]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[31]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[32]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[33]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[34]  Jun Lu,et al.  Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems , 2013, Nature Communications.

[35]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[36]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[37]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[38]  M. Armand,et al.  Building better batteries , 2008, Nature.

[39]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[40]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[41]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[42]  Seung M. Oh,et al.  Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li / Li x Mn2 O 4 Rechargeable Cells , 1997 .

[43]  Yunhong Zhou,et al.  Capacity Fading on Cycling of 4 V Li / LiMn2 O 4 Cells , 1997 .