Solving large-scale finite element nonlinear eigenvalue problems by resolvent sampling based Rayleigh-Ritz method

This paper focuses on the development and engineering applications of a new resolvent sampling based Rayleigh-Ritz method (RSRR) for solving large-scale nonlinear eigenvalue problems (NEPs) in finite element analysis. There are three contributions. First, to generate reliable eigenspaces the resolvent sampling scheme is derived from Keldysh’s theorem for holomorphic matrix functions following a more concise and insightful algebraic framework. Second, based on the new derivation a two-stage solution strategy is proposed for solving large-scale NEPs, which can greatly enhance the computational cost and accuracy of the RSRR. The effects of the user-defined parameters are studied, which provides a useful guide for real applications. Finally, the RSRR and the two-stage scheme is applied to solve two NEPs in the FE analysis of viscoelastic damping structures with up to 1 million degrees of freedom. The method is versatile, robust and suitable for parallelization, and can be easily implemented into other packages.

[1]  L. Eldén,et al.  Inexact Rayleigh Quotient-Type Methods for Eigenvalue Computations , 2002 .

[2]  Michel Potier-Ferry,et al.  A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures , 2001 .

[3]  I. Charpentier,et al.  A generic approach for the solution of nonlinear residual equations. Part II: Homotopy and complex nonlinear eigenvalue method , 2009 .

[4]  Stephen Martin Kirkup,et al.  Solution of the Helmholtz eigenvalue problem via the boundary element method , 1993 .

[5]  C. Effenberger,et al.  Robust Successive Computation of Eigenpairs for Nonlinear Eigenvalue Problems , 2013, SIAM J. Matrix Anal. Appl..

[6]  Tetsuya Sakurai,et al.  A projection method for nonlinear eigenvalue problems using contour integrals , 2013, JSIAM Lett..

[7]  Daniel Kressner,et al.  A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.

[8]  H. Voss A Jacobi-Davidson method for nonlinear and nonsymmetric eigenproblems , 2007 .

[9]  Chuanzeng Zhang,et al.  Resolvent sampling based Rayleigh-Ritz method for large-scale nonlinear eigenvalue problems , 2015, 1510.07522.

[10]  A. Noreika,et al.  Usability Evaluation of Finite Element Method Equation Solvers , 2007 .

[11]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[12]  G. T. Zheng,et al.  The Biot Model and Its Application in Viscoelastic Composite Structures , 2007 .

[13]  Wim Michiels,et al.  Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2015, SIAM J. Matrix Anal. Appl..

[14]  W. Beyn An integral method for solving nonlinear eigenvalue problems , 2012 .

[15]  Zhaojun Bai,et al.  The Lanczos Method for Parameterized Symmetric Linear Systems with Multiple Right-Hand Sides , 2010, SIAM J. Matrix Anal. Appl..

[16]  Tetsuya Sakurai,et al.  Solving large‐scale nonlinear eigenvalue problems by rational interpolation and resolvent sampling based Rayleigh–Ritz method , 2017 .

[17]  F. Tisseur Backward error and condition of polynomial eigenvalue problems , 2000 .

[18]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[19]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[20]  K. Bathe,et al.  Solution methods for eigenvalue problems in structural mechanics , 1973 .

[21]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[22]  Victor Y. Pan,et al.  Additive preconditioning and aggregation in matrix computations , 2008, Comput. Math. Appl..

[23]  Ivan G. Graham,et al.  Inexact inverse iteration for symmetric matrices , 2006 .

[24]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[25]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[26]  Yvan Notay,et al.  Controlling Inner Iterations in the Jacobi-Davidson Method , 2009, SIAM J. Matrix Anal. Appl..

[27]  V. Simoncini,et al.  Iterative system solvers for the frequency analysis of linear mechanical systems , 2000 .

[28]  F. Nicoud,et al.  Acoustic modes in combustors with complex impedances and multidimensional active flames , 2007 .

[29]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[30]  G. Golub,et al.  Eigenvalue computation in the 20th century , 2000 .

[31]  J. H. Wilkinson,et al.  Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .

[32]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[33]  S. I. Solov'ëv,et al.  Preconditioned iterative methods for a class of nonlinear eigenvalue problems , 2006 .

[34]  Michel Potier-Ferry,et al.  Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells , 2003 .

[35]  Tetsuya Sakurai,et al.  Performance comparison of parallel eigensolvers based on a contour integral method and a Lanczos method , 2013, Parallel Comput..

[36]  Sondipon Adhikari,et al.  Eigenvalues of linear viscoelastic systems , 2009 .

[37]  Sondipon Adhikari,et al.  Eigenderivative analysis of asymmetric non‐conservative systems , 2001, International Journal for Numerical Methods in Engineering.

[38]  A. Fowler,et al.  Acid polishing of lead glass , 2011 .

[39]  C. Conca,et al.  Existence and location of eigenvalues for fluid-solid structures , 1990 .

[40]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .

[41]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[42]  Roel Van Beeumen,et al.  Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2013 .

[43]  Victor Y. Pan,et al.  Additive preconditioning, eigenspaces, and the inverse iteration☆ , 2009 .

[44]  Hiroto Tadano,et al.  A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..

[45]  Volker Mehrmann,et al.  Solution of large scale parametric eigenvalue problems arising from brake squeal modeling , 2014 .

[46]  Ping Tak Peter Tang,et al.  FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..

[47]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[48]  Volker Mehrmann,et al.  Nonlinear eigenvalue and frequency response problems in industrial practice , 2011 .