Facile synthesis of CTAB assisted hierarchical-structure TiO2@SnO2 for lithium storage

[1]  Ning Liu,et al.  Nanoporous TiO2/MoO2/Fe3O4 composite as anode for high-performance lithium-ion batteries , 2019, Solid State Sciences.

[2]  Sheng-chao Song,et al.  Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage , 2019, Nano Energy.

[3]  J. Leng,et al.  Crystalline SnO2 @ amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries , 2019, Electrochimica Acta.

[4]  Seh-Yoon Lim Amorphous-silicon nanoshell on artificial graphite composite as the anode for lithium-ion battery , 2019, Solid State Sciences.

[5]  Junying Zhang,et al.  Hierarchical-structure anatase TiO2 with conductive network for high-rate and high-loading lithium-ion battery. , 2019, Science bulletin.

[6]  Zhixing Wang,et al.  A novel dried plum-like yolk–shell architecture of tin oxide nanodots embedded into a carbon matrix: ultra-fast assembly and superior lithium storage properties , 2019, Journal of Materials Chemistry A.

[7]  Xunhui Xiong,et al.  Upcycling of Electroplating Sludge into Ultrafine Sn@C Nanorods with Highly Stable Lithium Storage Performance. , 2019, Nano letters.

[8]  X. Lou,et al.  Hierarchical Microboxes Constructed by SnS Nanoplates Coated with Nitrogen-Doped Carbon for Efficient Sodium Storage. , 2019, Angewandte Chemie.

[9]  Cheng Xu,et al.  Electrospun 3D composite nano-flowers for high performance triple-cation perovskite solar cells , 2018, Electrochimica Acta.

[10]  Yong Jiang,et al.  Sandwiched spherical tin dioxide/graphene with a three-dimensional interconnected closed pore structure for lithium storage. , 2018, Nanoscale.

[11]  R. Jose,et al.  Large scale synthesis of 3D nanoflowers of SnO 2 /TiO 2 composite via electrospinning with synergistic properties , 2018, Materials Letters.

[12]  Y. Qian,et al.  NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries. , 2018, ACS nano.

[13]  Zuankai Wang,et al.  Toward advanced sodium-ion batteries: a wheel-inspired yolk–shell design for large-volume-change anode materials , 2018 .

[14]  F. Pan,et al.  Thermal convection induced TiO2 microclews as superior electrode materials for lithium-ion batteries , 2018 .

[15]  Li Yang,et al.  A new hybrid strategy for fabricating titanium dioxide/tin dioxide/carbon composites with outstanding lithium-ion storage , 2018, Chemical Engineering Journal.

[16]  Feng Li,et al.  CuS Microspheres with Tunable Interlayer Space and Micropore as a High‐Rate and Long‐Life Anode for Sodium‐Ion Batteries , 2018, Advanced Energy Materials.

[17]  Tianshuai Wang,et al.  A Top‐Down Strategy toward SnSb In‐Plane Nanoconfined 3D N‐Doped Porous Graphene Composite Microspheres for High Performance Na‐Ion Battery Anode , 2018, Advanced materials.

[18]  A. Uddin,et al.  Synergistic combination of electronic and electrical properties of SnO2 and TiO2 in a single SnO2-TiO2 composite nanofiber for dye-sensitized solar cells , 2018 .

[19]  S. Hirano,et al.  Facile fabrication of robust TiO 2 @SnO 2 @C hollow nanobelts for outstanding lithium storage , 2018 .

[20]  Hui Liu,et al.  Composite with TiO2 and extension of discharge voltage range for capacity enhancement of a Li4Ti5O12 battery , 2017 .

[21]  Min Chen,et al.  Hierarchical TiO2 /SnO2 Hollow Spheres Coated with Graphitized Carbon for High-Performance Electrochemical Li-Ion Storage. , 2017, Small.

[22]  X. Qiu,et al.  High Volumetric Capacity of Hollow Structured SnO2@Si Nanospheres for Lithium-Ion Batteries. , 2017, Nano letters.

[23]  Chunsheng Wang,et al.  Pipe-Wire TiO2-Sn@Carbon Nanofibers Paper Anodes for Lithium and Sodium Ion Batteries. , 2017, Nano letters.

[24]  Xinlu Li,et al.  Graphene nanoribbons wrapping double nanoshells of SnO2@TiO2 for high lithium storage , 2016 .

[25]  L. Lei,et al.  Hierarchically structured C@SnO2@C nanofiber bundles with high stability and effective ambipolar diffusion kinetics for high-performance Li-ion batteries , 2016 .

[26]  Yong Yang,et al.  Nitrogen-doped carbon coated Li4Ti5O12–TiO2/Sn nanowires and their enhanced electrochemical properties for lithium ion batteries , 2016 .

[27]  J. Choi,et al.  Ultrafast Discharge/Charge Rate and Robust Cycle Life for High‐Performance Energy Storage Using Ultrafine Nanocrystals on the Binder‐Free Porous Graphene Foam , 2016 .

[28]  Haiying Che,et al.  Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. , 2016, Nanoscale.

[29]  Haihui Wang,et al.  Flexible SnO2/N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life. , 2016, Small.

[30]  S. Ryu,et al.  Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries. , 2016, Nanoscale.

[31]  Zhongtao Li,et al.  Synthesis of nanocomposites with carbon–SnO2 dual-shells on TiO2 nanotubes and their application in lithium ion batteries , 2015 .

[32]  Yong Huang,et al.  Fluorine-Doped SnO2@Graphene Porous Composite for High Capacity Lithium-Ion Batteries , 2015 .

[33]  J. Yue,et al.  Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries. , 2015, ACS applied materials & interfaces.

[34]  Yanjie Hu,et al.  One-step synthesis of SnOx nanocrystalline aggregates encapsulated by amorphous TiO2 as an anode in Li-ion battery , 2015 .

[35]  Li Lu,et al.  Ru0.01Ti0.99Nb2O7 as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries , 2015 .

[36]  V. Pol,et al.  Ordered Network of Interconnected SnO2 Nanoparticles for Excellent Lithium‐Ion Storage , 2015 .

[37]  Yu‐Guo Guo,et al.  Ultra‐Uniform SnOx/Carbon Nanohybrids toward Advanced Lithium‐Ion Battery Anodes , 2014, Advanced materials.

[38]  Feihe Huang,et al.  Graphene-like MoS₂/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. , 2013, Small.

[39]  J. Jia,et al.  Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets , 2013 .

[40]  Bin Wang,et al.  One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability , 2013 .

[41]  Dongyun Chen,et al.  CTAB-assisted synthesis of single-layer MoS2–graphene composites as anode materials of Li-ion batteries , 2013 .

[42]  R. Ma,et al.  Microwave-assisted hydrothermal synthesis of porous SnO2 nanotubes and their lithium ion storage properties , 2012 .

[43]  Xuhong Guo,et al.  Influence of surfactants on the morphology of SnO2 nanocrystals prepared via a hydrothermal method , 2012 .

[44]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[45]  H. Fu,et al.  Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite‐like Carbon , 2008 .

[46]  Yadong Li,et al.  A CTAB-assisted hydrothermal orientation growth of ZnO nanorods , 2003 .

[47]  Lili Xing,et al.  Structural and electrochemical properties of SnO2/nanocarbon families as lithium-ion battery anodes , 2012 .