A 4-noded hybrid stress element with optimized stress for moderately thick and thin shallow shells
暂无分享,去创建一个
Nong Zhang | Chengyu Zhang | Qigen Song | Shenglin Di | Nong Zhang | S. Di | Qi‐gen Song | Chengyu Zhang
[1] M. Crisfield. A quadratic mindlin element using shear constraints , 1984 .
[2] E. Hinton,et al. A family of quadrilateral Mindlin plate elements with substitute shear strain fields , 1986 .
[3] Klaus-Jürgen Bathe,et al. A study of three‐node triangular plate bending elements , 1980 .
[4] Irwan Katili,et al. A new discrete Kirchhoff-Mindlin element based on Mindlin–Reissner plate theory and assumed shear strain fields—part II: An extended DKQ element for thick-plate bending analysis , 1993 .
[5] R. L. Harder,et al. A proposed standard set of problems to test finite element accuracy , 1985 .
[6] T. Pian,et al. Rational approach for assumed stress finite elements , 1984 .
[7] Ray W. Clough,et al. Improved numerical integration of thick shell finite elements , 1971 .
[8] K. Y. Sze,et al. A quadratic assumed natural strain curved triangular shell element , 1999 .
[9] C.-C. Wu,et al. Dual zero energy modes in mixed/hybrid elements-definition, analysis and control , 1990 .
[10] Rezak Ayad,et al. A new hybrid‐mixed variational approach for Reissner–Mindlin plates. The MiSP model , 1998 .
[11] K. Y. Sze,et al. A stabilized eighteen-node solid element for hyperelastic analysis of shells , 2004 .
[12] T. Pian. Derivation of element stiffness matrices by assumed stress distributions , 1964 .
[13] G R Heppler,et al. A Mindlin element for thick and deep shells , 1986 .
[14] Jean-Louis Batoz,et al. Evaluation of a new quadrilateral thin plate bending element , 1982 .
[15] J. A. Teixeira de Freitas,et al. The hybrid stress model for mindlin-reissner plates based on a stress optimization condition , 1993 .
[16] Medhat A. Haroun,et al. Reduced and selective integration techniques in the finite element analysis of plates , 1978 .
[17] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[18] Hai-chʿang Hu,et al. Variational Principles of Theory of Elasticity with Applications , 1984 .
[19] K. Y. Sze,et al. An Explicit Hybrid Stabilized Eighteen-Node Solid Element for Thin Shell Analysis , 1997 .
[20] Theodore H. H. Pian,et al. Alternative ways for formulation of hybrid stress elements , 1982 .
[21] Irwan Katili,et al. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. I - An extended DKT element for thick-plate bending analysis. II - An extended DKQ element for thick-plate bending analysis , 1993 .
[22] T. Pian,et al. A rational approach for choosing stress terms for hybrid finite element formulations , 1988 .
[23] Y. K. Cheung,et al. Hybrid quadrilateral element based on mindlin/reissner plate theory , 1989 .
[24] Robert L. Spilker,et al. A Serendipity cubic‐displacement hybrid‐stress element for thin and moderately thick plates , 1980 .
[25] O. C. Zienkiewicz,et al. Reduced integration technique in general analysis of plates and shells , 1971 .