Ultra-large-scale continuous-variable cluster states multiplexed in the time domain

A continuous-variable cluster state containing more than 10,000 entangled modes is deterministically generated and fully characterized. The developed time-domain multiplexing method allows each quantum mode to be manipulated by the same optical components at different times. An efficient scheme for measurement-based quantum computation on this cluster state is presented.

[1]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[2]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[3]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[4]  C. Fabre,et al.  Parametrically generated ultrafast frequency combs : a promising tool for wavelength multiplexed quantum information processing , 2013 .

[5]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[6]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[7]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[8]  Xiaolong Su,et al.  Experimental preparation of eight-partite cluster state for photonic qumodes. , 2012, Optics letters.

[9]  Olivier Pfister,et al.  One-way quantum computing in the optical frequency comb. , 2008, Physical review letters.

[10]  P. Loock,et al.  Building Gaussian cluster states by linear optics , 2006, quant-ph/0610119.

[11]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[12]  Akira Furusawa,et al.  Demonstration of unconditional one-way quantum computations for continuous variables. , 2010, Physical review letters.

[13]  Nicolas C. Menicucci,et al.  Graphical calculus for Gaussian pure states , 2010, 1007.0725.

[14]  Masato Koashi,et al.  Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. , 2008, Physical review letters.

[15]  Nicolas Gisin,et al.  Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. , 2010, Nature communications.

[16]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[17]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[18]  Hans-A. Bachor,et al.  Programmable multimode quantum networks , 2012, Nature Communications.

[19]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[20]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[21]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[22]  Akira Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2003 .

[23]  Yoshichika Miwa,et al.  Parallel generation of quadripartite cluster entanglement in the optical frequency comb. , 2011, Physical review letters.

[24]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[25]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[26]  A. Furusawa,et al.  Experimental generation of four-mode continuous-variable cluster states , 2008, 2008 International Nano-Optoelectronics Workshop.

[27]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[28]  Shota Yokoyama,et al.  Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation. , 2011, Physical review letters.

[29]  Shuntaro Takeda,et al.  Teleportation of Nonclassical Wave Packets of Light , 2011, Science.

[30]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[31]  S. Braunstein,et al.  Continuous-variable Gaussian analog of cluster states , 2006 .

[32]  Akira Furusawa,et al.  Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing , 2011 .