The application of finite element techniques to acoustic transmission in lined ducts with flow

The finite element method (FEM) is used to analyze the propagation of sound in two-dimensional nonuniform ducts carrying a compressible subsonic mean flow. Galerkin and residual least squares (RLS) methods with natural and forced boundary conditions are considered. The accuracy of FEM results for the eigenvalue and transmission problems is assessed by comparison with alternative numerical schemes for nonuniform ducts. The results presented and those from associated investigations indicate that modal coupling is a significant feature of the acoustic field, especially at high Mach numbers. A multimodal model therefore appears to be essential if any reliable conclusions are to be drawn in the context of turbofan inlet regions. Improvements to the eigenvalue scheme following the implementation of higher-order Hermitian elements indicate a similar modification for the transmission problem.