Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δ(iso)) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δ(iso). This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σ(MC) and π*(MC) orbitals under the action of the magnetic field, is analogous to that resulting from coupling σ(CC) and π*(CC) in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δ(iso) in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σ(MC) and π*(MC) vs this between σ(CC) and π*(CC) in ethylene. This effect also explains why the highest value of δ(iso) is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to π(MX)) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δ(iso).

[1]  C. Copéret C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. , 2010, Chemical reviews.

[2]  R. Schrock Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture). , 2006, Angewandte Chemie.

[3]  R. Schrock,et al.  Z-Selective Catalytic Olefin Cross-Metathesis , 2011, Nature.

[4]  Jochen Autschbach,et al.  Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: The role of Pt 5d lone pairs , 2008, Magnetic resonance in chemistry : MRC.

[5]  R. Schrock,et al.  Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. , 2003, Angewandte Chemie.

[6]  R. Schrock Recent advances in high oxidation state Mo and W imido alkylidene chemistry. , 2009, Chemical reviews.

[7]  Shaohui Zheng,et al.  Analysis of electric field gradient tensors at quadrupolar nuclei in common structural motifs , 2010 .

[8]  Malcolm L. H. Green,et al.  Carbon-hydrogen-transition metal bonds , 1983 .

[9]  H. Davies,et al.  Reactions of metallocarbenes derived from N-sulfonyl-1,2,3-triazoles. , 2014, Chemical Society reviews.

[10]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[11]  C. Copéret,et al.  Molecular Insight Into Surface Organometallic Chemistry Through the Combined Use of 2D HETCOR Solid‐State NMR Spectroscopy and Silsesquioxane Analogues , 2002 .

[12]  J. Autschbach,et al.  Chapter 1 Relativistic Computations of NMR Parameters from First Principles: Theory and Applications , 2009 .

[13]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[14]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[15]  D. Grant,et al.  Carbon-13 dipolar spectroscopy of small organic molecules in argon matrixes , 1981 .

[16]  M. Straka,et al.  Interpretation of substituent effects on 13C and 15N NMR chemical shifts in 6-substituted purines. , 2011, Physical chemistry chemical physics : PCCP.

[17]  Frank Jensen,et al.  Basis Set Convergence of Nuclear Magnetic Shielding Constants Calculated by Density Functional Methods. , 2008, Journal of chemical theory and computation.

[18]  C. Copéret,et al.  Structure, spectroscopic and electronic properties of a well defined silica supported olefin metathesis catalyst, [(SiO)Re(CR)(CHR)(CH2R)], through DFT periodic calculations: silica is just a large siloxy ligand , 2006 .

[19]  Weiguo Song,et al.  The mechanism of methanol to hydrocarbon catalysis. , 2003, Accounts of chemical research.

[20]  Vincenzo Barone,et al.  Toward reliable adiabatic connection models free from adjustable parameters , 1997 .

[21]  K. Feindel,et al.  Phosphorus magnetic shielding tensors for transition-metal compounds containing phosphine, phosphido, and phosphinidene ligands: Insights from computational chemistry , 2004 .

[22]  R. Ditchfield,et al.  Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility , 1972 .

[23]  R. Schrock,et al.  Highly active, stable, and selective well-defined silica supported mo imido olefin metathesis catalysts. , 2007, Journal of the American Chemical Society.

[24]  R. Errington,et al.  17O NMR chemical shifts in oxometalates: from the simplest monometallic species to mixed-metal polyoxometalates , 2014 .

[25]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[26]  C. Strohmann,et al.  Understanding Substituent Effects on 29Si Chemical Shifts and Bonding in Disilynes. A Quantum-Chemical Analysis , 2003 .

[27]  M. Kaupp,et al.  A Relativistic Quantum-Chemical Analysis of the trans Influence on (1)H NMR Hydride Shifts in Square-Planar Platinum(II) Complexes. , 2015, Inorganic chemistry.

[28]  H. Fujii,et al.  Solid-state 17O NMR and computational studies of terminal transition metal oxo compounds , 2012 .

[29]  C. Copéret,et al.  Understanding structural and dynamic properties of well-defined rhenium-based olefin metathesis catalysts, Re(≡CR)(=CHR)(X)(Y), from DFT and QM/MM calculations , 2005 .

[30]  C. Copéret,et al.  A highly active well-defined rhenium heterogeneous catalyst for olefin metathesis prepared via surface organometallic chemistry. , 2001, Journal of the American Chemical Society.

[31]  Trygve Helgaker,et al.  Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants , 1999 .

[32]  M. Kaupp,et al.  “Unexpected” 29Si NMR Chemical Shifts in Heteroatom-Substituted Silyllithium Compounds: A Quantum-Chemical Analysis , 2004 .

[33]  R. Schurko,et al.  Understanding chemical shielding tensors using group theory, MO analysis, and modern density‐functional theory , 2009 .

[34]  P. Maitlis,et al.  Fischer–Tropsch, organometallics, and other friends , 2004 .

[35]  R. Schrock,et al.  A well-defined, silica-supported tungsten imido alkylidene olefin metathesis catalyst , 2006 .

[36]  Y. Ruiz-Morales,et al.  Theoretical Study of 13C and 17O NMR Shielding Tensors in Transition Metal Carbonyls Based on Density Functional Theory and Gauge-Including Atomic Orbitals , 1996 .

[37]  A. Charette,et al.  Stereoselective cyclopropanation reactions. , 2003, Chemical reviews.

[38]  Frank Weinhold,et al.  Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations , 1997 .

[39]  Glenn J. Sunley,et al.  Detailed structural investigation of the grafting of [Ta(=CHtBu)(CH2tBu)3] and [Cp*TaMe4] on silica partially dehydroxylated at 700 degrees C and the activity of the grafted complexes toward alkane metathesis. , 2004, Journal of the American Chemical Society.

[40]  K. Morokuma,et al.  Unusual 31P Chemical Shielding Tensors in Terminal Phosphido Complexes Containing a Phosphorus−Metal Triple Bond , 1996 .

[41]  A. D. de Dios,et al.  Ab initio calculations of NMR chemical shifts. , 2008, The Journal of chemical physics.

[42]  W. Lukens,et al.  Perhydrocarbyl ReVII complexes: comparison of molecular and surface complexes. , 2003, Journal of the American Chemical Society.

[43]  Jochen Autschbach,et al.  Scalar Relativistic Computations and Localized Orbital Analyses of Nuclear Hyperfine Coupling and Paramagnetic NMR Chemical Shifts. , 2012, Journal of chemical theory and computation.

[44]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[45]  C. Copéret,et al.  DFT calculations of d0 M(NR)(CHtBu)(X)(Y) (M = Mo, W; R = CPh3, 2,6-iPr-C6H3; X and Y = CH2tBu, OtBu, OSi(OtBu)3) olefin metathesis catalysts: structural, spectroscopic and electronic properties. , 2006, Dalton transactions.

[46]  M. Leconte An approach to the mechanisms of CC bond formation and cleavage on metal surfaces using model elementary reaction steps of organometallic chemistry , 1994 .

[47]  M. Doyle Perspective on dirhodium carboxamidates as catalysts. , 2006, The Journal of organic chemistry.

[48]  Nicholas C. Handy,et al.  The density functional calculation of nuclear shielding constants using London atomic orbitals , 1995 .

[49]  M. Pecul,et al.  The Influence of a Presence of a Heavy Atom on (13)C Shielding Constants in Organomercury Compounds and Halogen Derivatives. , 2013, Journal of chemical theory and computation.

[50]  J. Michl,et al.  LOW-TEMPERATURE CARBON-13 MAGNETIC RESONANCE OF SOLIDS. 1. ALKENES AND CYCLOALKENES , 1980 .

[51]  A. Hoveyda Evolution of Catalytic Stereoselective Olefin Metathesis: From Ancillary Transformation to Purveyor of Stereochemical Identity , 2014, The Journal of organic chemistry.

[52]  Shaohui Zheng,et al.  Solid-state chlorine NMR of group IV transition metal organometallic complexes. , 2009, Journal of the American Chemical Society.

[53]  R. Schrock,et al.  Surface versus molecular siloxy ligands in well-defined olefin metathesis catalysts: [{(RO)3SiO}Mo(=NAr)(=CHtBu)(CH2tBu)]. , 2006, Angewandte Chemie.

[54]  C. Copéret,et al.  Low-Temperature Hydrogenolysis of Alkanes Catalyzed by a Silica-Supported Tantalum Hydride Complex, and Evidence for a Mechanistic Switch from Group IV to Group V Metal Surface Hydride Complexes , 2000 .

[55]  E. Abou‐hamad,et al.  Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(═CH2)Me2]/[(≡SiO)2Ta(═CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)Ta(V)Me4]. , 2015, Journal of the American Chemical Society.

[56]  Eva Zurek,et al.  Density Functional Study of the 13C NMR Chemical Shifts in Single-Walled Carbon Nanotubes with Stone−Wales Defects , 2008 .

[57]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[58]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[59]  Jochen Autschbach,et al.  Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals. , 2008, The Journal of chemical physics.

[60]  G. Schreckenbach,et al.  Origin of the Hydridic 1H NMR Chemical Shift in Low-Valent Transition-Metal Hydrides , 1996 .

[61]  M. Straka,et al.  Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds. , 2013, The journal of physical chemistry. A.

[62]  M. Straka,et al.  Mechanism of Spin-Orbit Effects on the Ligand NMR Chemical Shift in Transition-Metal Complexes: Linking NMR to EPR. , 2014, Journal of chemical theory and computation.

[63]  W. M. Davis,et al.  Alkyl and Alkylidene Complexes of Tantalum That Contain a Triethylsilyl-Substituted Triamido−Amine Ligand , 1996 .

[64]  D. J. Timmons,et al.  Catalyst Selection for Metal Carbene Transformations , 2001 .

[65]  J. Poblet,et al.  Accurate calculation of (31)P NMR chemical shifts in polyoxometalates. , 2015, Physical chemistry chemical physics : PCCP.

[66]  Christopher C. Cummins,et al.  Complexes obtained by electrophilic attack on a dinitrogen-derived terminal molybdenum nitride: electronic structure analysis by solid state CP/MAS 15N NMR in combination with DFT calculations , 2004 .

[67]  F. Meier,et al.  Relativistic four-component DFT calculations of 1H NMR chemical shifts in transition-metal hydride complexes: unusual high-field shifts beyond the Buckingham-Stephens model. , 2011, The journal of physical chemistry. A.

[68]  T. Farrar,et al.  Natural Bond Orbital Analysis of Carbon-13 Chemical Shieldings in Acetylenes , 1996 .

[69]  R. Grubbs Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel Lecture). , 2006, Angewandte Chemie.

[70]  C. Copéret,et al.  Metathesis of alkanes and related reactions. , 2010, Accounts of chemical research.

[71]  J. Cheeseman,et al.  NMR CHEMICAL SHIFTS. 3. A COMPARISON OF ACETYLENE, ALLENE, AND THE HIGHER CUMULENES , 1999 .

[72]  M. Pecul,et al.  A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis. , 2012, The Journal of chemical physics.

[73]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[74]  O. Eisenstein,et al.  DFT calculations of NMR JC–H coupling constants: An additional tool to characterize the α-agostic interaction in high oxidation state M-alkylidene complexes (M = Re, Mo and Ta) , 2006 .

[75]  R. Schrock,et al.  Dynamics of silica-supported catalysts determined by combining solid-state NMR spectroscopy and DFT calculations. , 2008, Journal of the American Chemical Society.

[76]  Malcolm L. H. Green,et al.  Carbonhydrogen-transition metal bonds , 1983 .

[77]  G. Bazan,et al.  MONOADDUCTS OF IMIDO ALKYLIDENE COMPLEXES, SYN AND ANTI ROTAMERS, AND ALKYLIDENE LIGAND ROTATION , 1991 .

[78]  J. Autschbach The Calculation of NMR Parameters in Transition Metal Complexes , 2004 .

[79]  F. Blanc,et al.  Well-defined silica supported metallocarbenes: Formation and reactivity , 2009 .

[80]  R. Schrock,et al.  Rotational Isomers of Mo(VI) Alkylidene Complexes and Cis/Trans Polymer Structure: Investigations in Ring-Opening Metathesis Polymerization , 1993 .

[81]  Evert Jan Baerends,et al.  Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance , 1999 .

[82]  R. Schrock,et al.  Low-temperature neutron diffraction studies of C-H-metal interactions in two tantalum-neopentylidene complexes: (Ta(CHCMe/sub 3/)(PMe/sub 3/)Cl/sub 3/)/sub 2/ (T = 110 K) and the first alkylidene/olefin complex, Ta(eta/sup 5/-C/sub 5/Me/sub 5/)(CHCMe/sub 3/)(eta/sup 2/-C/sub 2/H/sub 4/)(PMe/sub 3/) , 1981 .

[83]  C. Copéret,et al.  σ-Bond Metathesis of Alkanes on a Silica-Supported Tantalum(V) Alkyl Alkylidene Complex: First Evidence for Alkane Cross-Metathesis. , 2001, Angewandte Chemie.