Demographic collapse threatens the long-term persistence of Andean condors in the northern Andes

[1]  F. H. Vargas,et al.  Anthropogenic threats to the Vulnerable Andean Condor in northern South America , 2022, PloS one.

[2]  Jennifer A. Szymanski,et al.  Linking evolutionary potential to extinction risk: applications and future directions , 2022, Frontiers in Ecology and the Environment.

[3]  J. Stabach,et al.  Implementation of species distribution models in Google Earth Engine , 2022, Diversity and Distributions.

[4]  J. Calabrese,et al.  Autocorrelation‐informed home range estimation: A review and practical guide , 2021, Methods in Ecology and Evolution.

[5]  Sergio A. Lambertucci,et al.  Defining Spatial Conservation Priorities for the Andean Condor (Vultur gryphus) , 2021, Journal of Raptor Research.

[6]  Sergio A. Lambertucci,et al.  Mitogenomic analysis of extant condor species provides insight into the molecular evolution of vultures , 2021, Scientific Reports.

[7]  Erez Lieberman Aiden,et al.  Genome-wide diversity in the California condor tracks its prehistoric abundance and decline , 2021, Current Biology.

[8]  G. Yannic,et al.  Mapping our knowledge on birds of prey population genetics , 2021, Conservation Genetics.

[9]  Sergio A. Lambertucci,et al.  Ecology and conservation of a rare species: What do we know and what may we do to preserve Andean condors? , 2020 .

[10]  Sergio A. Lambertucci,et al.  Andean and California condors possess dissimilar genetic composition but exhibit similar demographic histories , 2020, Ecology and evolution.

[11]  E. Woehler,et al.  Identifying mechanisms of genetic differentiation among populations in vagile species: historical factors dominate genetic differentiation in seabirds , 2020, Biological reviews of the Cambridge Philosophical Society.

[12]  Roger A. Moraga,et al.  A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: Implications for conservation breeding programmes worldwide , 2020, Evolutionary applications.

[13]  F. Allendorf,et al.  The Exciting Potential and Remaining Uncertainties of Genetic Rescue. , 2019, Trends in ecology & evolution.

[14]  Sergio A. Lambertucci,et al.  Genetic consequences of social dynamics in the Andean condor: the role of sex and age , 2019, Behavioral Ecology and Sociobiology.

[15]  M. Gross Hunting wildlife to extinction , 2019, Current Biology.

[16]  K. Nielsen,et al.  Genomic variation predicts adaptive evolutionary responses better than population bottleneck history , 2019, PLoS genetics.

[17]  Sergio A. Lambertucci,et al.  Monitoring vultures in the 21 st century: The need for standardized protocols , 2019, Journal of Applied Ecology.

[18]  Chloe Bracis,et al.  Revisitation analysis uncovers spatio‐temporal patterns in animal movement data , 2018 .

[19]  Sergio A. Lambertucci,et al.  Evidence of genetic structure in a wide‐ranging and highly mobile soaring scavenger, the Andean condor , 2018, Diversity and Distributions.

[20]  R. Piana,et al.  Preliminary Habitat Models of Foraging and Roosting Sites Used By Two Rehabilitated Adult Male Andean Condors (Vultur gryphus) In Peru , 2018, Journal of Raptor Research.

[21]  John Fieberg,et al.  Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses , 2018, Ecology and evolution.

[22]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[23]  Jacob van Etten,et al.  R package gdistance: distances and routes on geographical grids (version 1.1-4) , 2012 .

[24]  Brita B. Schneiders,et al.  stratag: An r package for manipulating, summarizing and analysing population genetic data , 2017, Molecular ecology resources.

[25]  Mark P. Miller,et al.  Ancient DNA reveals substantial genetic diversity in the California Condor (Gymnogyps californianus) prior to a population bottleneck , 2016, The Condor.

[26]  Justin M. Calabrese,et al.  ctmm: an r package for analyzing animal relocation data as a continuous‐time stochastic process , 2016 .

[27]  G. Zapata-Ríos,et al.  Andean Condor (Vultur gryphus) in Ecuador: Geographic Distribution, Population Size and Extinction Risk , 2016, PloS one.

[28]  N. Keyghobadi,et al.  Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change , 2015, Molecular ecology.

[29]  J. DeWoody,et al.  The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings , 2015 .

[30]  M. Jakobsson,et al.  Clumpak: a program for identifying clustering modes and packaging population structure inferences across K , 2015, Molecular ecology resources.

[31]  P. Muir,et al.  related: an R package for analysing pairwise relatedness from codominant molecular markers , 2015, Molecular ecology resources.

[32]  Wayne M. Getz,et al.  Moving beyond Curve Fitting: Using Complementary Data to Assess Alternative Explanations for Long Movements of Three Vulture Species , 2015, The American Naturalist.

[33]  Sergio A. Lambertucci,et al.  Apex scavenger movements call for transboundary conservation policies , 2014 .

[34]  C. Bradshaw,et al.  Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses , 2014 .

[35]  G. M. Macbeth,et al.  NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data , 2014, Molecular ecology resources.

[36]  Hadley Wickham,et al.  Dates and Times Made Easy with lubridate , 2011 .

[37]  F. Balloux,et al.  Discriminant analysis of principal components: a new method for the analysis of genetically structured populations , 2010, BMC Genetics.

[38]  M. Culver,et al.  Long‐term survival despite low genetic diversity in the critically endangered Madagascar fish‐eagle , 2008, Molecular ecology.

[39]  F. Rousset genepop’007: a complete re‐implementation of the genepop software for Windows and Linux , 2008, Molecular ecology resources.

[40]  A. Estoup,et al.  Microsatellite null alleles and estimation of population differentiation. , 2007, Molecular biology and evolution.

[41]  Clément Calenge,et al.  The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals , 2006 .

[42]  J. Corander,et al.  Bayesian identification of admixture events using multilocus molecular markers , 2006, Molecular ecology.

[43]  A. O. Folkestad,et al.  Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline , 2006, Biology Letters.

[44]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[45]  W. Fagan,et al.  Quantifying the extinction vortex. , 2005, Ecology letters.

[46]  J. Goudet HIERFSTAT , a package for R to compute and test hierarchical F -statistics , 2005 .

[47]  E. Thompson,et al.  A model-based method for identifying species hybrids using multilocus genetic data. , 2002, Genetics.

[48]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[49]  R. Frankham,et al.  Genetic management of chondrodystrophy in California condors , 2000 .

[50]  G. Luikart,et al.  Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data , 1999 .

[51]  J. Wiley,et al.  The reintroduction of the Andean condor into Colombia, South America: 1989–1991 , 1993, Oryx.

[52]  N. L. Jácome,et al.  Reintroduction strategy for the Andean Condor Conservation Program, Argentina , 2017 .

[53]  J. Evans,et al.  Modeling Species Distribution and Change Using Random Forest , 2011 .

[54]  Norma,et al.  AN EVALUATION OF THE ANDEAN CONDOR POPULATION IN NORTHERN ECUADOR , 2008 .

[55]  W. Toone,et al.  The extinction in the wild and reintroduction of the California condor (Gymnogyps californianus) , 1994 .