Electrochemical synthesis of thin HKUST-1 layers on copper mesh

Abstract Metal-organic framework HKUST-1 was synthesized on a porous copper mesh using an electrochemical synthesis technique. By partially oxidizing the mesh in a controllable manner, thin crystal layers could be synthesized without structurally damaging the supporting mesh. Good control over the crystal size could be obtained by varying the water content of the synthesis mixture. This technique allows the formation of crystal layers overgrowing the porous copper support at mild temperatures and short synthesis times.

[1]  S. Kaskel,et al.  Metal-Organic Frameworks in Monolithic Structures , 2010 .

[2]  S. Qiu,et al.  "Twin copper source" growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2). , 2009, Journal of the American Chemical Society.

[3]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[4]  Xiu‐Ping Yan,et al.  In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. , 2009, Analytical chemistry.

[5]  R. Ranjan,et al.  Microporous Metal Organic Framework Membrane on Porous Support Using the Seeded Growth Method , 2009 .

[6]  M. van der Auweraer,et al.  Patterned film growth of metal-organic frameworks based on galvanic displacement. , 2010, Chemical communications.

[7]  Z. Lai,et al.  Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth , 2009 .

[8]  W. Jin,et al.  Metal-organic framework membranes fabricated via reactive seeding. , 2011, Chemical communications.

[9]  Hiroshi Uji-i,et al.  Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions , 2010, Advanced materials.

[10]  A. Terfort,et al.  Rapid Room‐Temperature Synthesis of Metal–Organic Framework HKUST‐1 Crystals in Bulk and as Oriented and Patterned Thin Films , 2011 .

[11]  E. Haque,et al.  Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses. , 2010, Physical chemistry chemical physics : PCCP.

[12]  Mircea Dincă,et al.  Reductive electrosynthesis of crystalline metal-organic frameworks. , 2011, Journal of the American Chemical Society.

[13]  V. K. Peterson,et al.  Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. , 2008, Angewandte Chemie.

[14]  J. Caro,et al.  Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. , 2010, Angewandte Chemie.

[15]  Hae‐Kwon Jeong,et al.  HKUST-1 membranes on porous supports using secondary growth , 2010 .

[16]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[17]  F. Kapteijn,et al.  Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina , 2008 .

[18]  W. Jin,et al.  Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[19]  Jan Fransaer,et al.  Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis , 2009 .

[20]  S. Jhung,et al.  Facile Syntheses of Metal-organic Framework Cu3(BTC)2(H2O)3 under Ultrasound , 2009 .