The water content and parental magma of the second chassignite NWA 2737: Clues from trapped melt inclusions in olivine

NWA 2737, the second known chassignite, mainly consists of cumulate olivine crystals of homogeneous composition (Fo = 78.7 ± 0.9). These brown colored olivine grains exhibit two sets of perpendicular planar defects due to shock. Two forms of trapped liquids, interstitial melts and magmatic inclusions, have been examined. Mineral assemblages within the olivine‐hosted magmatic inclusions include low‐Ca pyroxene, augite, kaersutite, fluorapatite, biotite, chromite, sulfide, and feldspathic glass. The reconstructed parental magma composition (A#) of the NWA 2737 is basaltic and resembles both the experimentally constrained parental melt composition of chassiginites and the Gusev basalt Humphrey, albeit with lower Al contents. A# also broadly resembles the average of shergottite parent magmas or LAR 06319. However, we suggest that the mantle source for the chassignite parental magmas was distinct from that of the shergottite meteorites, particularly in CaO/Al2O3 ratio. In addition, based on the analysis of the volatile contents of kaersutite, we derived a water content of 0.48–0.67 wt% for the parental melt. Finally, our MELTS calculations suggest that moderate pressure (approximately 6.8 kb) came closest to reproducing the crystallized melt‐inclusion assemblages.

[1]  John H. Jones,et al.  Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites , 2012 .

[2]  F. McCubbin,et al.  Hydrous melting of the martian mantle produced both depleted and enriched shergottites , 2012 .

[3]  V. Sautter,et al.  Melt inclusions in augite from the nakhlite meteorites: A reassessment of nakhlite parental melt and implications for petrogenesis , 2012 .

[4]  H. McSween,et al.  High Silica Contents in Martian Basalts and Its Relationship to Magmatic Water , 2012 .

[5]  A. B. Sarbadhikari,et al.  Evidence for heterogeneous enriched shergottite mantle sources in Mars from olivine-hosted melt inclusions in Larkman Nunatak 06319 , 2011 .

[6]  J. Beckett,et al.  Fe–Mg Partitioning between Olivine and High-magnesian Melts and the Nature of Hawaiian Parental Liquids , 2011 .

[7]  J. Filiberto,et al.  Fe2+–Mg partitioning between olivine and basaltic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior , 2011 .

[8]  F. Langenhorst,et al.  Microstructural investigations on strongly stained olivines of the chassignite NWA 2737 and implications for its shock history , 2010 .

[9]  C. Herd,et al.  Crystallization, melt inclusion, and redox history of a Martian meteorite: Olivine-phyric shergottite Larkman Nunatak 06319 , 2010 .

[10]  Andrew Steele,et al.  Nominally hydrous magmatism on the Moon , 2010, Proceedings of the National Academy of Sciences.

[11]  F. McCubbin,et al.  Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian , 2010 .

[12]  B. Jolliff,et al.  Detection of structurally bound hydroxyl in fluorapatite from Apollo Mare basalt 15058,128 using TOF-SIMS , 2010 .

[13]  A. Treiman,et al.  Primitive olivine‐phyric shergottite NWA 5789: Petrography, mineral chemistry, and cooling history imply a magma similar to Yamato‐980459 , 2010 .

[14]  A. Treiman,et al.  Martian magmas contained abundant chlorine, but little water , 2009 .

[15]  F. McCubbin,et al.  Linking the Chassigny meteorite and the Martian surface rock Backstay: Insights into igneous crustal differentiation processes on Mars , 2009 .

[16]  R. Korotev,et al.  PETROLOGY AND COMPOSITION OF NORTHWEST AFRICA 2990: A NEW TYPE OF FINE- GRAINED, ENRICHED, OLIVINE-PHYRIC SHERGOTTITE. T. E. Bunch , 2009 .

[17]  C. Mandeville,et al.  Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa , 2009 .

[18]  F. McCubbin,et al.  Compositional diversity and stratification of the Martian crust: Inferences from crystallization experiments on the picrobasalt Humphrey from Gusev Crater, Mars , 2008 .

[19]  T. Hiroi,et al.  Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine , 2008 .

[20]  F. McCubbin,et al.  Maskelynite-hosted apatite in the Chassigny meteorite: Insights into late-stage magmatic volatile evolution in martian magmas , 2008 .

[21]  J. Filiberto Experimental constraints on the parental liquid of the Chassigny meteorite: A possible link between the Chassigny meteorite and a Martian Gusev basalt , 2008 .

[22]  D. Cherniak REE diffusion in olivine , 2007 .

[23]  B. Reynard,et al.  Shock-induced metallic iron nanoparticles in olivine-rich Martian meteorites , 2007 .

[24]  B. Reynard,et al.  Shock-induced transformation of olivine to a new metastable (Mg,Fe)2SiO4 polymorph in Martian meteorites , 2007 .

[25]  F. McCubbin,et al.  Alkalic parental magmas for chassignites? , 2007 .

[26]  C. Pieters,et al.  Martian Dunite NWA 2737: Petrographic constraints on geological history, shock events, and olivine color , 2007 .

[27]  Derek M. Cunnold,et al.  Observations of 1,1‐difluoroethane (HFC‐152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates , 2007 .

[28]  K. Sugiyama,et al.  Determination of the Fe oxidation state of the Chassigny kaersutite: A microXANES spectroscopic study , 2006 .

[29]  B. Reynard,et al.  Petrography and geochemistry of the chassignite Northwest Africa 2737 (NWA 2737) , 2006 .

[30]  B. Reynard,et al.  Pyroxene Crystal-Chemistry and the Late Cooling History of NWA 2737 , 2006 .

[31]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[32]  J. Webster,et al.  Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid , 2005 .

[33]  H. McSween,et al.  Melt inclusions in augite of the Nakhla martian meteorite: Evidence for basaltic parental melt , 2005 .

[34]  M. Toplis The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems , 2005 .

[35]  Paul D. Asimow,et al.  Adiabat_1ph: A new public front‐end to the MELTS, pMELTS, and pHMELTS models , 2005 .

[36]  J. Fritz,et al.  Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-stage ejection history , 2004 .

[37]  C. Langmuir,et al.  A hydrous melting and fractionation model for mid‐ocean ridge basalts: Application to the Mid‐Atlantic Ridge near the Azores , 2004 .

[38]  L. Borg,et al.  A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites , 2003 .

[39]  W. Boynton,et al.  Composition of the first bulk melt sample from a volcanic region of Mars: Queen Alexandra Range 94201 , 2003 .

[40]  Dougal A. Jerram,et al.  Quantifying the Building Blocks of Igneous Rocks: Are Clustered Crystal Frameworks the Foundation? , 2003 .

[41]  N. Boctor,et al.  The sources of water in Martian meteorites: clues from hydrogen isotopes , 2003 .

[42]  C. Goodrich Petrogenesis of olivine-phyric shergottites Sayh Al Uhaymir 005 and elephant moraine A79001 lithology A , 2003 .

[43]  Mark S. Ghiorso,et al.  The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa , 2002 .

[44]  E. Watson,et al.  Modeling the major-element evolution of olivine-hosted melt inclusions , 2002 .

[45]  H. McSween,et al.  Water in martian magmas: clues from light lithophile elements in shergottite and nakhlite pyroxenes , 2001 .

[46]  H. McSween,et al.  Phase equilibria of the Shergotty meteorite: Constraints on pre‐eruptive water contents of martian magmas and fractional crystallization under hydrous conditions , 2001 .

[47]  R. Clocchiatti,et al.  Glass-bearing inclusions in Nakhla(SNC meteorite) augite: heterogeneouslytrapped phases , 2001 .

[48]  O. Eugster,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[49]  H. McSween,et al.  Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite , 2001, Nature.

[50]  H. McSween,et al.  Re-evaluation of intercumulus liquid composition and oxidation state for the Shergotty meteorite , 1999 .

[51]  Paul D. Asimow,et al.  Algorithmic modifications extending MELTS to calculate subsolidus phase relations , 1998 .

[52]  B. Mysen,et al.  The role of H2O in Martian magmatic systems , 1998 .

[53]  K. Lodders A survey of shergottite, nakhlite and chassigny meteorites whole‐rock compositions , 1998 .

[54]  L. Leshin,et al.  HYDROGEN ISOTOPE GEOCHEMISTRY OF SNC METEORITES , 1996 .

[55]  D. Virgo,et al.  H DEFICIENCY IN KAERSUTITIC AMPHIBOLES : EXPERIMENTAL VERIFICATION , 1995 .

[56]  M. Wadhwa,et al.  Trace and minor elements in minerals of nakhlites and Chassigny: Clues to their petrogenesis , 1995 .

[57]  H. S. Yoder,et al.  Thermodynamic properties of stoichiometric staurolite H2Fe4Al18Si8O48 and H6Fe2Al18Si8O48 , 1995 .

[58]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[59]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[60]  A. Treiman The parent magma of the Nakhla (SNC) meteorite, inferred from magmatic inclusions , 1993 .

[61]  H. McSween,et al.  Petrography, mineral chemistry, and petrogenesis of Antarctic Shergottite LEW88516 , 1993 .

[62]  J. Stormer,et al.  Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis , 1993 .

[63]  H. McSween,et al.  Outgassed Water on Mars: Constraints from Melt Inclusions in SNC Meteorites , 1993, Science.

[64]  H. McSween,et al.  The parent magma of the nakhlite meteorites - Clues from melt inclusions , 1992 .

[65]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes , 1987 .

[66]  C. Merzbacher,et al.  A magmatic geohygrometer: Application to Mount St. Helens and other dacitic magmas , 1984 .

[67]  E. Takahashi Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts: compositional dependence of partition coefficient , 1978 .

[68]  B. Leake,et al.  Nomenclature of Amphiboles , 1978, Mineralogical Magazine.

[69]  R. J. Floran,et al.  A Cumulate Dunite with Hydrous Amphibole-Bearing Melt Inclusions , 1978 .

[70]  B. Leake,et al.  Report. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names , 1971, Mineralogical Magazine.

[71]  Christine Schuon About this Study , 2021, Doors, Entrances and Beyond... Various Aspects of Entrances and Doors of the Tombs in the Memphite Necropoleis during the Old Kingdom.

[72]  A. Kent Melt Inclusions in Basaltic and Related Volcanic Rocks , 2008 .

[73]  Gerald R. Dickens,et al.  Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale , 2008 .

[74]  C. Agee,et al.  High Pressure Melting of H-Chondrite: A Match for the Martian Basalt Source Mantle , 2005 .

[75]  S. Sokolov,et al.  Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications , 2000 .

[76]  H. McSween,et al.  Wet inside and out? Constraints on water in the Martian mantle and on outgassed water, based on melt inclusions in SNC meteorites , 1993 .

[77]  Marie C. Johnson,et al.  Chassigny petrogenesis: Melt compositions, intensive parameters, and water contents of Martian ( ) magmas , 1991 .

[78]  J. Longhi,et al.  The parent magmas of the SNC meteorites. , 1989 .

[79]  E. Roedder Origin and significance of magmatic inclusions , 1979 .