Inversion-based feedforward and reference signal design for fractional constrained control systems

Abstract In this paper we propose a solution for the synthesis of a feedforward control action for a fractional control system. In particular, an input–output inversion based methodology is devised in order to determine the open-loop signal that provides a predefined process variable transition from a steady-state value to another. The transition time is then minimized subject to constraints on the process and control variables and their derivatives. Simulation results show the effectiveness of the technique.

[1]  Giorgio Battistelli,et al.  Model-free Adaptive Switching Control of Uncertain Time-Varying Plants , 2011 .

[2]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[3]  Yanjun Shen,et al.  Exponential stability and exponential stabilization of singularly perturbed stochastic systems with time‐varying delay , 2010 .

[4]  Xavier Moreau,et al.  An overview of the CRONE approach in system analysis, modeling and identification, observation and control , 2008 .

[5]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[6]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  Aurelio Piazzi,et al.  Optimal inversion-based control for the set-point regulation of nonminimum-phase uncertain scalar systems , 2001, IEEE Trans. Autom. Control..

[9]  Jan C. Willems,et al.  Introduction to Mathematical Systems Theory. A Behavioral , 2002 .

[10]  José António Tenreiro Machado,et al.  Fractional Order Calculus: Basic Concepts and Engineering Applications , 2010 .

[11]  Luigi Fortuna,et al.  New results on the synthesis of FO-PID controllers , 2010 .

[12]  Antonio Visioli,et al.  Tuning rules for optimal PID and fractional-order PID controllers , 2011 .

[13]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[14]  A. J. Calderón,et al.  Fractional PID Controllers for Industry Application. A Brief Introduction , 2007 .

[15]  Arak M. Mathai,et al.  Special Functions for Applied Scientists , 2008 .

[16]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[17]  Alessandro Pisano,et al.  Sliding mode control approaches to the robust regulation of linear multivariable fractional‐order dynamics , 2010 .

[18]  Antonio Visioli,et al.  Inversion-based feedforward design for constrained fractional control systems , 2013, 2013 European Control Conference (ECC).

[19]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[20]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[21]  Manuel Duarte Ortigueira,et al.  Fractional Calculus for Scientists and Engineers , 2011, Lecture Notes in Electrical Engineering.

[22]  Qingze Zou,et al.  Preview-based optimal inversion for output tracking: application to scanning tunneling microscopy , 2004, IEEE Transactions on Control Systems Technology.

[23]  Juan J. Gude,et al.  New tuning rules for PI and fractional PI controllers , 2009 .

[24]  Naomi Ehrich Leonard,et al.  Proceedings Of The 2000 American Control Conference , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[25]  Antonio Visioli,et al.  H∞H∞ control of fractional linear systems , 2013, Autom..

[26]  Alain Oustaloup,et al.  Motion Control by ZV Shaper Synthesis Extended for Fractional Systems and Its Application to CRONE Control , 2004 .

[27]  Debasish Ghose,et al.  A fractional order proportional integral controller for path following and trajectory tracking of miniature air vehicles , 2014 .

[28]  Aurelio Piazzi,et al.  A servo control system design using dynamic inversion , 2002 .

[29]  Manuel Duarte Ortigueira,et al.  A new look into the discrete-time fractional calculus: transform and linear systems , 2013 .

[30]  A. J. Calderón,et al.  On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties , 2004 .

[31]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[32]  Qingze Zou,et al.  Robust Inversion-Based 2-DOF Control Design for Output Tracking: Piezoelectric-Actuator Example , 2009, IEEE Transactions on Control Systems Technology.

[33]  Antonio Visioli,et al.  Practical PID Control , 2006 .

[34]  Qingze Zou,et al.  Preview-based optimal inversion for output tracking , 2002 .

[35]  Alain Oustaloup,et al.  Robust path tracking using flatness for fractional linear MIMO systems: A thermal application , 2010, Comput. Math. Appl..

[36]  Alain Oustaloup,et al.  Flatness Control of a Fractional Thermal System , 2007 .

[37]  Duarte Valério,et al.  Introduction to single-input, single-output fractional control , 2011 .

[38]  Raul Rivas-Perez,et al.  Comparative Analysis of Stability and Robustness between Integer and Fractional-Order PI Controllers for First Order plus Time Delay Plants , 2011 .

[39]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[40]  Aurelio Piazzi,et al.  Optimal noncausal set-point regulation of scalar systems , 2001, Autom..

[41]  Nabil Derbel,et al.  Robust path tracking by preshaping approach designed for third generation CRONE control , 2012, Int. J. Model. Identif. Control..

[42]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[44]  Alain Oustaloup,et al.  Frequency Band-Limited Fractional Differentiator Prefilter in Path Tracking Design , 2007 .

[45]  Y. Chen,et al.  Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers , 2008 .

[46]  Christiaan Heij,et al.  Introduction to mathematical systems theory , 1997 .

[47]  Aurelio Piazzi,et al.  Robust set-point constrained regulation via dynamic inversion† , 2001 .

[48]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[49]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[50]  Alain Oustaloup,et al.  Fractional Motion Control: Application to an XY Cutting Table , 2002 .

[51]  P. Melchior,et al.  Davidson-cole transfer function in path tracking design , 2001, 2001 European Control Conference (ECC).