An Efficient Exact Algorithm for Constraint Bipartite Vertex Cover

The constraint bipartite vertex cover problem (CBVC for short) is as follows: given a bipartite graph G with n vertices and two positive integers k1,k2, is there a vertex cover taking at most k1 vertices from one and at most k2 vertices from the other vertex set of G? CBVC is NP-complete. It formalizes the spare allocation problem for reconfigurable arrays, an important problem from VLSI manufacturing. We provide a nontrivial so-called fixed parameter algorithm for CBVC, running in O(1.3999k1+k2+(k1+k2)n) time. Our algorithm is efficient and practical for small values of k1 and k2, as occurring in applications. The analysis of the search tree is based on a novel bonus point system: after the processing of the search tree (which takes time exponential in k), a polynomial-time final analysis follows. Parts of the computation that would be normally done within the search-tree phase can be postponed; nevertheless, knowledge about the size of those parts can be used to reduce the length of the search paths (and hence the depth of the search tree as a whole) by a sort of bonus points.

[1]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[2]  Adi Shamir,et al.  A T=O(2n/2), S=O(2n/4) Algorithm for Certain NP-Complete Problems , 1981, SIAM J. Comput..

[3]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[4]  Franklin T. Luk,et al.  Fault Tolerance Techniques For Systolic Arrays , 1987, Optics & Photonics.

[5]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[6]  Robert C. Evans,et al.  Testing Repairable RAMs and Mostly Good Memories , 1981, International Test Conference.

[7]  Kurt Mehlhorn,et al.  Computing a Maximum Cardinality Matching in a Bipartite Graph in Time O(^1.5 sqrt m/log n) , 1991, Inf. Process. Lett..

[8]  Rolf Niedermeier,et al.  Some Prospects for Efficient Fixed Parameter Algorithms , 1998, SOFSEM.

[9]  Rolf Niedermeier,et al.  New Upper Bounds for MaxSat , 1999, ICALP.

[10]  Melvin A. Breuer,et al.  On Area and Yield Considerations for Fault-Tolerant VLSI Processor Arrays , 1984, IEEE Transactions on Computers.

[11]  Hon Wai Leong,et al.  A New Class of Efficient Algorithms for Reconfiguration of Memory Arrays , 1996, IEEE Trans. Computers.

[12]  Rolf Niedermeier,et al.  New Upper Bounds for Maximum Satisfiability , 2000, J. Algorithms.

[13]  Rajeev Motwani,et al.  Clique partitions, graph compression and speeding-up algorithms , 1991, STOC '91.

[14]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[15]  Pinaki Mazumder,et al.  Generation of Minimal Vertex Covers for Row/Column Allocation in Self-Repairable Arrays , 1996, IEEE Trans. Computers.

[16]  Douglas M. Blough On the reconfiguration of memory arrays containing clustered faults , 1991, [1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First International Symposium.

[17]  Nany Hasan,et al.  Minimum fault coverage in reconfigurable arrays , 1988, [1988] The Eighteenth International Symposium on Fault-Tolerant Computing. Digest of Papers.

[18]  J. Wiedermann Fast simulation of nondeterministic turing machines with application to the knapsack problem , 1989 .

[19]  Sy-Yen Kuo,et al.  Efficient reconfiguration algorithms for degradable VLSI/WSI arrays , 1991, 1991 Proceedings, International Conference on Wafer Scale Integration.

[20]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[21]  Andrzej Pelc,et al.  Complexity of Fault Diagnosis in Comparison Models , 1992, IEEE Trans. Computers.

[22]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[23]  John Day A Fault-Driven, Comprehensive Redundancy Algorithm , 1985, IEEE Design & Test of Computers.

[24]  W. Kent Fuchs,et al.  Probabilistic analysis and algorithms for reconfiguration of memory arrays , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[25]  José A. B. Fortes,et al.  A taxonomy of reconfiguration techniques for fault-tolerant processor arrays , 1990, Computer.

[26]  Dilip K. Bhavsar,et al.  Alpha 21164 Testability Strategy , 1997, IEEE Des. Test Comput..

[27]  Thomas E. Fuja,et al.  Row/Column Replacement for the Control of Hard Defects in Semiconductor RAM's , 1986, IEEE Transactions on Computers.

[28]  R. Downey,et al.  Parameterized Computational Feasibility , 1995 .

[29]  Fabrizio Lombardi,et al.  Approaches for the repair of VLSI/WSI RRAMs by row/column deletion , 1988, [1988] The Eighteenth International Symposium on Fault-Tolerant Computing. Digest of Papers.

[30]  S. E. Schuster Multiple word/bit line redundancy for semiconductor memories , 1978 .

[31]  W. Kent Fuchs,et al.  Fault Diagnosis and Spare Allocation for Yield Enhancement in Large Reconfigurable PLA's , 1992, IEEE Trans. Computers.

[32]  David Eppstein,et al.  3-Coloring in time O(1.3446n): A no-MIS Algorithm , 1995, Electron. Colloquium Comput. Complex..

[33]  Rolf Niedermeier,et al.  A general method to speed up fixed-parameter-tractable algorithms , 2000, Inf. Process. Lett..

[34]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[35]  Sudhakar M. Reddy,et al.  On the Design of Fault-Tolerant Two-Dimensional Systolic Arrays for Yield Enhancement , 1989, IEEE Trans. Computers.

[36]  Marc E. Levitt Designing UltraSparc for Testability , 1997, IEEE Des. Test Comput..

[37]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness , 1984, EATCS Monographs on Theoretical Computer Science.

[38]  Charles H. Stapper,et al.  Large-Area Fault Clusters and Fault Tolerance in VLSI Circuits: A Review , 1989, IBM J. Res. Dev..

[39]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for PLANAR DOMINATING SET and Related Problems , 2000, SWAT.

[40]  Sy-yen Kuo,et al.  Efficient Spare Allocation for Reconfigurable Arrays , 1987, IEEE Design & Test of Computers.

[41]  Evgeny Dantsin,et al.  Deterministic Algorithms for k-SAT Based on Covering Codes and Local Search , 2000, ICALP.

[42]  U. Schöning A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[43]  Michael R. Fellows,et al.  An Improved Fixed-Parameter Algorithm for Vertex Cover , 1998, Inf. Process. Lett..

[44]  Michael R. Fellows,et al.  Parameterized complexity: A framework for systematically confronting computational intractability , 1997, Contemporary Trends in Discrete Mathematics.

[45]  Nany Hasan,et al.  Fault covers in reconfigurable PLAs , 1990, [1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium.

[46]  Lynn Youngs,et al.  Mapping and Repairing Embedded-Memory Defects , 1997, IEEE Des. Test Comput..

[47]  Rolf Niedermeier,et al.  Upper Bounds for Vertex Cover Further Improved , 1999, STACS.

[48]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).