A Lower Bounding Structure for Lot-Size Scheduling Problems

This paper discusses efficient methods for determining optimal lower bounds (and concomitant dual variables) for lot-size problems of both fixed and variable capacity. The approach unifies lower bounding procedures for several common forms of the problem on the basis of generalized duality theory. Through the optimal (lower bounding) dual solution, a production plan can be generated that when “rounded” to feasibility may be optimal or near optimal for problems of appropriate configuration.

[1]  Alan S. Manne,et al.  Programming of Economic Lot Sizes , 1958 .

[2]  Katta G. Murty,et al.  Solving the Fixed Charge Problem by Ranking the Extreme Points , 1968, Oper. Res..

[3]  E. M. L. Beale,et al.  Nonlinear and Dynamic Programming , 1965 .

[4]  Leon S. Lasdon,et al.  An Efficient Algorithm for Multi-Item Scheduling , 1971, Oper. Res..

[5]  W. Zangwill A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production System---A Network Approach , 1969 .

[6]  Salah E. Elmaghraby,et al.  An Operational System for Smoothing Batch-Type Production , 1966 .

[7]  D. R. Denzler,et al.  An approximative algorithm for the fixed charge problem , 1969 .

[8]  Leon Cooper,et al.  An approximate solution method for the fixed charge problem , 1967 .

[9]  Sidney W. Hess,et al.  A Linear Programming Approach to Production and Employment Scheduling , 1960 .

[10]  H. M. Wagner,et al.  Dynamic problems in the theory of the firm , 1958 .

[11]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[12]  Curtis H. Jones Parametric Production Planning , 1967 .

[13]  B. P. Dzielinski,et al.  Optimal Programming of Lot Sizes, Inventory and Labor Allocations , 1965 .

[14]  A. M. Geoffrion Duality in Nonlinear Programming: A Simplified Applications-Oriented Development , 1971 .

[15]  B. P. Dzielinski,et al.  Simulation Tests of Lot Size Programming , 1963 .

[16]  E. Newson Multi-Item Lot Size Scheduling by Heuristic Part I: With Fixed Resources , 1975 .

[17]  W. D. Northup,et al.  USING DUALITY TO SOLVE DISCRETE OPTIMIZATION PROBLEMS: THEORY AND COMPUTATIONAL EXPERIENCE* , 1975 .

[18]  E. Newson Multi-Item Lot Size Scheduling by Heuristic Part II: With Variable Resources , 1975 .

[19]  Samuel Gorenstein,et al.  Planning Tire Production , 1970 .

[20]  D. I. Steinberg,et al.  The fixed charge problem , 1970 .

[21]  J. Stoer,et al.  Convexity and Optimization in Finite Dimensions I , 1970 .

[22]  Earl E. Bomberger,et al.  A Dynamic Programming Approach to a Lot Size Scheduling Problem , 1966 .

[23]  M. Fisher,et al.  Constructive Duality in Integer Programming , 1974 .

[24]  Harvey M. Wagner A POSTSCRIPT TO DYNAMIC PROBLEMS IN THE THEORY OF THE FIRM , 1960 .