Frequency Offset Estimation for Unknown QAM Constellations

We introduce a novel, both gain and signal-to-noise ratio independent, constellation unaware, blind frequency offset estimation procedure for QAM signals. Asymptotic performance analysis and numerical simulations show that the herein presented method outperforms a selected state of the art blind constellation unaware estimator, especially for cross constellations.

[1]  Umberto Mengali,et al.  The modified Cramer-Rao bound and its application to synchronization problems , 1994, IEEE Trans. Commun..

[2]  Stefania Colonnese,et al.  Gain-Control-Free Near-Efficient Phase Acquisition for QAM Constellations , 2008, IEEE Transactions on Signal Processing.

[3]  Slaheddine Jarboui,et al.  Blind carrier phase recovery for general quadrature amplitude modulation constellations , 2008, IET Commun..

[4]  William Moran,et al.  Cramer-Rao lower bounds for QAM phase and frequency estimation , 2001, IEEE Trans. Commun..

[5]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[6]  Patrizio Campisi,et al.  Blind equalization for correlated input symbols: A Bussgang approach , 2005, IEEE Transactions on Signal Processing.

[7]  Erchin Serpedin,et al.  Optimal blind nonlinear least-squares carrier phase and frequency offset estimation for burst QAM modulations , 2003, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[8]  Asoke K. Nandi,et al.  Blind equalization of square-QAM signals: a multimodulus approach , 2010, IEEE Transactions on Communications.

[9]  Gaetano Scarano,et al.  Bussgang-zero crossing equalization: an integrated HOS-SOS approach , 2001, IEEE Trans. Signal Process..

[10]  Stefania Colonnese,et al.  Gain-Control-Free Blind Carrier Frequency Offset Acquisition for QAM Constellations , 2010, IEEE Transactions on Signal Processing.

[11]  Stefania Colonnese,et al.  Generalized Method of Moments Estimation of Location Parameters: Application to Blind Phase Acquisition , 2010, IEEE Transactions on Signal Processing.

[12]  R. Wiggins Minimum entropy deconvolution , 1978 .

[13]  Jerry M. Mendel,et al.  Maximum-likelihood classification for digital amplitude-phase modulations , 2000, IEEE Trans. Commun..

[14]  Zhi Ding,et al.  QAM constellation classification based on statistical sampling for linear distortive channels , 2006, IEEE Transactions on Signal Processing.

[15]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[16]  G. Panci,et al.  Blind carrier frequency offset estimation for cross QAM constellations , 2007, 2007 4th International Symposium on Wireless Communication Systems.

[17]  MengChu Zhou,et al.  Distributed Automatic Modulation Classification With Multiple Sensors , 2010, IEEE Sensors Journal.

[18]  Gaetano Scarano,et al.  Discrete time techniques for time delay estimation , 1993, IEEE Trans. Signal Process..