Synthesis of Carbon Nanostructures by CVD Method

The field of nanotechnology continues to develop. Carbon based materials with different structure and dimensions become increasingly important in the field. Carbon nanotubes (CNTs) are particularly promising due to their anisotropic extraordinary electrical, thermal and mechanical properties that have captured the imagination of researchers worldwide. However, the complexity involved in synthesis of nanotubes in a predictable manner has held back the development of real-world carbon nanotube based applications. In this chapter the structure and synthesis methods will be discussed of CNTs and other forms of nanostructures of carbons. Furthermore, their structuring into macroscopic assemblies, like mats and fibres will be presented as it has important role in future industrial applications of these materials.

[1]  M. Yudasaka,et al.  Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition , 1997 .

[2]  Hiromichi Kataura,et al.  Formation of Thin Single-Wall Carbon Nanotubes by Laser Vaporization of Rh/Pd-Graphite Composite Rod , 1998 .

[3]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[4]  Michael J. Bronikowski,et al.  Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study , 2001 .

[5]  M. Meyyappan,et al.  Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor , 2002 .

[6]  Myung Jong Kim,et al.  Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers , 2002, Science.

[7]  R. Baker,et al.  Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers , 1995 .

[8]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[9]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[10]  A. Govindaraj,et al.  Nitrogen-containing carbon nanotubes , 1997 .

[11]  A. Rubio,et al.  Elastic properties of single-wall nanotubes , 1999 .

[12]  Gary G. Tibbetts,et al.  Why are carbon filaments tubular , 1984 .

[13]  K. Nordtvedt from newton's moon to einstein's moon , 1996 .

[14]  P. Walker,et al.  Carbon Formation from Carbon Monoxide-Hydrogen Mixtures over Iron Catalysts.I. Properties of Carbon Formed , 1959 .

[15]  Y. Ando The Preparation of Carbon Nanotubes , 1994 .

[16]  Sajad Haq,et al.  Large-area synthesis of carbon nanofibres at room temperature , 2002, Nature materials.

[17]  O. Sugino,et al.  Nanotube and nanohorn nucleation from graphitic patches: Tight-binding molecular-dynamics simulations , 2002 .

[18]  M. Terrones Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications , 2004 .

[19]  P. Midgley,et al.  Nitrogen in highly crystalline carbon nanotubes , 2006 .

[20]  Yoshinori Ando,et al.  Camphor–a botanical precursor producing garden of carbon nanotubes , 2003 .

[21]  T. Chou,et al.  Carbon nanotube/carbon fiber hybrid multiscale composites , 2002 .

[22]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[23]  Tow Chong Chong,et al.  Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition , 2002 .

[24]  A. Hiraki,et al.  Electron emission from nano-structured carbon composite materials — an important role of the interface for enhancing the emission , 2006 .

[25]  G. Tibbetts Vapor-grown carbon fibers: Status and prospects , 1989 .

[26]  J. P. Zhang,et al.  Controlled production of aligned-nanotube bundles , 1997, Nature.

[27]  Masamichi Kohno,et al.  Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol , 2002 .

[28]  Y. Ando,et al.  Macroscopic oriented web of single-wall carbon nanotubes , 2003 .

[29]  H. Kroto,et al.  Pyrolytic carbon nanotubes from vapor-grown carbon fibers , 1995 .

[30]  C. Chen,et al.  Fabrication of high surface area graphitic nanoflakes on carbon nanotubes templates , 2005 .

[31]  Yuanhe Huang,et al.  Structure and electronic properties of nitrogen-containing carbon nanotubes , 2000 .

[32]  R. J. Waite,et al.  Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene , 1972 .

[33]  Daoben Zhu,et al.  Controllable Growth, Structure, and Low Field Emission of Well-Aligned CNx Nanotubes , 2002 .

[34]  J. Nagy,et al.  Fe-catalyzed carbon nanotube formation , 1996 .

[35]  D. Manos,et al.  Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition , 2004 .

[36]  John Robertson,et al.  Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. , 2006, Nano letters.

[37]  Y. Ando,et al.  Carbon Nanotubes Grown on the Surface of Cathode Deposit by Arc Discharge , 1996 .

[38]  C. B. Carter,et al.  Growth and Sintering of Fullerene Nanotubes , 1994, Science.

[39]  A. Yamada,et al.  Large-scale rooted growth of aligned super bundles of single-walled carbon nanotubes using a directed arc plasma method , 2001 .

[40]  R. Smalley,et al.  Uranium Stabilization of C28: A Tetravalent Fullerene , 1992, Science.

[41]  Yoshinori Ando,et al.  A simple method of producing aligned carbon nanotubes from an unconventional precursor – Camphor , 2003 .

[42]  H. Kataura,et al.  Time period for the growth of single-wall carbon nanotubes in the laser ablation process: evidence from gas dynamic studies and time resolved imaging , 2000 .

[43]  P. Ajayan,et al.  Silicon oxide thickness-dependent growth of carbon nanotubes , 2004 .

[44]  L. Ci,et al.  Direct growth of carbon nanotubes on the surface of ceramic fibers , 2005 .

[45]  Shoushan Fan,et al.  Nanotechnology: Spinning continuous carbon nanotube yarns , 2002, Nature.

[46]  Jeunghee Park,et al.  Growth of Vertically Aligned Nitrogen-Doped Carbon Nanotubes: Control of the Nitrogen Content over the Temperature Range 900−1100 °C , 2003 .

[47]  C. Rao,et al.  Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures , 1998 .

[48]  F. Marken,et al.  Adsorption and redox processes at carbon nanofiber electrodes grown onto a ceramic fiber backbone , 2003 .

[49]  Zhimin Liu,et al.  Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route , 2005 .

[50]  Hiromichi Kataura,et al.  Diameter control of single-walled carbon nanotubes , 2000 .

[51]  Shigeo Maruyama,et al.  Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy , 2004 .

[52]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[53]  Chemically active substitutional nitrogen impurity in carbon nanotubes. , 2003, Physical review letters.

[54]  T. Ebbesen Carbon Nanotubes: Preparation and Properties , 1996 .

[55]  Michael Sennett,et al.  High-Performance Carbon Nanotube Fiber , 2007, Science.

[56]  Gehan A. J. Amaratunga,et al.  Uniform patterned growth of carbon nanotubes without surface carbon , 2001 .

[57]  Yoshinori Ando,et al.  Field emission from camphor–pyrolyzed carbon nanotubes , 2004 .

[58]  E. Liang,et al.  *Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine , 2003 .

[59]  J. Ketterson,et al.  Carbon nanotubes synthesized in a hydrogen arc discharge , 1995 .

[60]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[61]  Shigeo Maruyama,et al.  Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates , 2003 .

[62]  John Robertson,et al.  Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition , 2003 .

[63]  A. Chuang,et al.  Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition , 2006 .

[64]  Growth, nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors , 2005 .

[65]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[66]  Hugh O. Pierson,et al.  Handbook of carbon, graphite, diamond, and fullerenes : properties, processing, and applications , 1993 .

[67]  A. Chuang,et al.  Uniform and selective CVD growth of carbon nanotubes and nanofibres on arbitrarily microstructured silicon surfaces , 2006 .

[68]  Otto Zhou,et al.  Plasma-induced alignment of carbon nanotubes , 2000 .

[69]  A. Govindaraj,et al.  Carbon nanotubes by the metallocene route , 1997 .

[70]  T. Ichihashi,et al.  Preparation of high-grade carbon nanotubes by hydrogen arc discharge , 1997 .

[71]  L. Forró,et al.  CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production , 2003 .

[72]  John Robertson,et al.  Three-dimensional carbon nanowall structures , 2007 .

[73]  Martin Moskovits,et al.  Highly-ordered carbon nanotube arrays for electronics applications , 1999 .

[74]  P. Bernier,et al.  Synthesis of N-doped SWNT using the arc-discharge procedure , 2004 .

[75]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[76]  C. N. R. Rao,et al.  Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ , 1999 .

[77]  P. Ajayan,et al.  Microfabrication technology: Organized assembly of carbon nanotubes , 2002, Nature.

[78]  S. Pennycook,et al.  Dynamics of single-wall carbon nanotube synthesis by laser vaporization , 2000 .

[79]  S. Xie,et al.  Very long carbon nanotubes , 1998, Nature.

[80]  Cheol-Eui Lee,et al.  Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes , 2004 .

[81]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[82]  J. Robertson,et al.  Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates , 2003 .

[83]  C. Kuo,et al.  Growth mechanism and properties of the large area well-aligned carbon nano-structures deposited by microwave plasma electron cyclotron resonance chemical vapor deposition , 2002 .

[84]  P. Midgley,et al.  Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. , 2006, Small.

[85]  M. Terrones,et al.  Metal particle catalysed production of nanoscale BN structures , 1996 .

[86]  Hui-Ming Cheng,et al.  Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons , 1998 .

[87]  F. Rodríguez-Reinoso,et al.  Chemistry and Physics of Carbon , 2022 .

[88]  C. Roland,et al.  Liquid-crystal phases of capped carbon nanotubes , 2001 .

[89]  A. Rousset,et al.  Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions , 1999 .

[90]  A. Rinzler,et al.  Self-assembly of tubular fullerenes , 1995 .

[91]  Alan H. Windle,et al.  Nematic Liquid Crystallinity of Multiwall Carbon Nanotubes , 2003, Science.

[92]  Wenzhi Li,et al.  Field emission of carbon nanotubes grown on carbon cloth , 2004 .

[93]  R. Smalley,et al.  PURIFICATION OF SINGLE-WALL CARBON NANOTUBES BY MICROFILTRATION , 1997 .

[94]  Robert H. Hauge,et al.  Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process) , 2001 .

[95]  G. Park,et al.  Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition , 2000 .

[96]  M. Yudasaka,et al.  Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism , 2002 .

[97]  Chen,et al.  Gap reduction and the collapse of solid C60 to a new phase of carbon under pressure. , 1992, Physical review letters.

[98]  Robert C. Haddon,et al.  Proton exchange membrane fuel cells with carbon nanotube based electrodes , 2004 .

[99]  H. Pierson Handbook of carbon, graphite, diamond, and fullerenes , 1992 .

[100]  L. Delzeit,et al.  Electronic properties of multiwalled carbon nanotubes in an embedded vertical array , 2002 .

[101]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[102]  Philip Ball,et al.  Roll up for the revolution , 2001, Nature.

[103]  G. Tibbetts,et al.  An adsorption-diffusion isotherm and its application to the growth of carbon filaments on iron catalyst particles , 1987 .

[104]  G. Tibbetts Lengths of carbon fibers grown from iron catalyst particles in natural gas , 1985 .

[105]  S. T. Lee,et al.  Uniform carbon nanoflake films and their field emissions , 2002 .

[106]  Alan M. Cassell,et al.  Chemical vapor deposition of methane for single-walled carbon nanotubes , 1998 .

[107]  A. Govindaraj,et al.  Large aligned-nanotube bundles from ferrocene pyrolysis , 1998 .

[108]  M. Shaffer,et al.  Three‐Dimensional Internal Order in Multiwalled Carbon Nanotubes Grown by Chemical Vapor Deposition , 2005 .

[109]  Hayashi,et al.  Interlayer spacings in carbon nanotubes. , 1993, Physical review. B, Condensed matter.

[110]  Michel Touzeau,et al.  Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition , 2004 .

[111]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[112]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[113]  R. Baker,et al.  Novel carbon fiber-carbon filament structures , 1991 .

[114]  M. Dresselhaus,et al.  Graphite fibers and filaments , 1988 .

[115]  Hyoun-woo Kim,et al.  Synthesis of bamboo-shaped carbon-nitrogen nanotubes using C2H2-NH3-Fe(CO)5 system , 2002 .

[116]  Yuegang Zhang,et al.  Heterogeneous growth of BCN nanotubes by laser ablation , 1997 .

[117]  R. J. Waite,et al.  Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene , 1975 .

[118]  Kenji Takeuchi,et al.  The production and structure of pyrolytic carbon nanotubes (PCNTs) , 1993 .

[119]  Vladimir I. Merkulov,et al.  Patterned growth of individual and multiple vertically aligned carbon nanofibers , 2000 .

[120]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[121]  W. D. de Heer,et al.  Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. , 2000, Physical review letters.

[122]  Lianxi Zheng,et al.  Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. , 2007, Small.

[123]  H. Kataura,et al.  Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures , 2003, Nature.

[124]  S. Tsai,et al.  Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis , 1999 .

[125]  I. Kinloch,et al.  Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. , 2008, Small.

[126]  F. Wei,et al.  The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor , 2002 .

[127]  P. Ajayan,et al.  Multifunctional composites using reinforced laminae with carbon-nanotube forests , 2006, Nature materials.

[128]  R. Baker,et al.  Catalytic growth of carbon filaments , 1989 .

[129]  S. Iijima,et al.  Preparation of Carbon Nanotubes by Arc-Discharge Evaporation , 1993 .

[130]  R. Li,et al.  Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings , 2003 .

[131]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[132]  P. Eklund,et al.  Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes , 1998 .

[133]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[134]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[135]  Yun-Hsiang Wang,et al.  Synthesis of large area aligned carbon nanotube arrays from C2H2–H2 mixture by rf plasma-enhanced chemical vapor deposition , 2001 .

[136]  M. Miki-Yoshida,et al.  Catalytic growth of carbon microtubules with fullerene structure , 1993 .

[137]  Ruiqin Q. Zhang,et al.  First-principles calculations for nitrogen-containing single-walled carbon nanotubes , 2003 .

[138]  A. Chuang,et al.  Low temperature synthesis of carbon nanofibres on carbon fibre matrices , 2005 .

[139]  F. Alvarez,et al.  Incorporation of nitrogen in carbon nanotubes , 2002 .

[140]  D. Gruen,et al.  Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition , 1998 .

[141]  M. Okai,et al.  Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition , 2000 .

[142]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[143]  W. E. Billups,et al.  Dissolution of Pristine Single Walled Carbon Nanotubes in Superacids by Direct Protonation , 2004 .

[144]  A. Rinzler,et al.  SINGLE-WALL NANOTUBES PRODUCED BY METAL-CATALYZED DISPROPORTIONATION OF CARBON MONOXIDE , 1996 .

[145]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[146]  S. Iijima,et al.  Laser Ablation of Graphite−Co/Ni and Growth of Single-Wall Carbon Nanotubes in Vortexes Formed in an Ar Atmosphere , 2000 .

[147]  M. Yumura,et al.  Dispersion of metal nanoparticles for aligned carbon nanotube arrays , 2000 .

[148]  Y. Ando,et al.  Production of petal-like graphite sheets by hydrogen arc discharge , 1997 .

[149]  M. Terrones,et al.  Pure and doped boron nitride nanotubes , 2007 .

[150]  P. Bernier,et al.  Synthesis of highly nitrogen-doped multi-walled carbon nanotubes. , 2003, Chemical communications.

[151]  S. Tanemura,et al.  Identification of compounds produced through contact arc vaporization of graphite under CH4 ambience , 1994 .

[152]  Kun-Hong Lee,et al.  Fabrication of flexible field emitter arrays of carbon nanotubes using self-assembly monolayers , 2003 .

[153]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[154]  Andrew G. Glen,et al.  APPL , 2001 .