Classification of graphs by Laplacian eigenvalue distribution and independence number

Let mGI denote the number of Laplacian eigenvalues of a graph G in an interval I and let α(G) denote the independence number of G. In this paper, we determine the classes of graphs that satisfy the condition mG[0, n − α(G)] = α(G) when α(G) = 2 and α(G) = n−2, where n is the order of G. When α(G) = 2, G ∼= K1∇Kn−m∇Km−1 for some m ≥ 2. When α(G) = n − 2, there are two types of graphs B(p, q, r) and B′(p, q, r) of order n = p + q + r + 2, which we call the binary star graphs. Also, we show that the binary star graphs with p = r are determined by their Laplacian spectra.

[1]  Russell Merris,et al.  Ordering trees by algebraic connectivity , 1990, Graphs Comb..

[2]  Xiaogang Liu,et al.  Laplacian spectral characterization of some double starlike trees , 2012, 1205.6027.

[3]  Nair Maria Maia de Abreu,et al.  The characteristic polynomial of the Laplacian of graphs in (a,b)-linear classes , 2002 .

[4]  Willem H. Haemers,et al.  Enumeration of cospectral graphs , 2004, Eur. J. Comb..

[5]  W. Haemers,et al.  Which graphs are determined by their spectrum , 2003 .

[6]  Isabel Faria Permanental roots and the star degree of a graph , 1985 .

[7]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .

[8]  Stephen T. Hedetniemi,et al.  Domination number and Laplacian eigenvalue distribution , 2016, Eur. J. Comb..

[9]  V. Sunder,et al.  The Laplacian spectrum of a graph , 1990 .

[10]  Ji-Ming Guo On the third largest Laplacian eigenvalue of a graph , 2007 .

[11]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[12]  S. Akbari,et al.  Laplacian eigenvalue distribution and graph parameters , 2022, Linear Algebra and its Applications.

[13]  Xiaogang Liu,et al.  One special double starlike graph is determined by its Laplacian spectrum , 2009, Appl. Math. Lett..

[14]  Yong-Liang Pan,et al.  A note on the second largest eigenvalue of the laplacian matrix of a graph , 2000 .

[15]  Fenglei Tian,et al.  Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution , 2020 .

[16]  Russell Merris,et al.  The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..