Robust Image Segmentation using Active Contours: Level Set Approaches

Lee, Cheolha Pedro. Robust Image Segmentation using Active Contours: Level Set Approaches. (Under the direction of Dr. Wesley Snyder). Image segmentation is a fundamental task in image analysis responsible for partitioning an image into multiple sub-regions based on a desired feature. Active contours have been widely used as attractive image segmentation methods because they always produce sub-regions with continuous boundaries, while the kernel-based edge detection methods, e.g. Sobel edge detectors, often produce discontinuous boundaries. The use of level set theory has provided more flexibility and convenience in the implementation of active contours. However, traditional edge-based active contour models have been applicable to only relatively simple images whose sub-regions are uniform without internal edges. A partial solution to the problem of internal edges is to partition an image based on the statistical information of image intensity measured within sub-regions instead of looking for edges. Although representing an image as a piecewise-constant or unimodal probability density functions produces better results than traditional edge-based methods, the performances of such methods is still poor on images with sub-regions consisting of multiple components, e.g. a zebra on the field. The segmentation of this kind of multispectral images is even a more difficult problem. The object of this work is to develop advanced segmentation methods which provide robust performance on the images with non-uniform sub-regions. In this work, we propose a framework for image segmentation which partitions an image based on the statistics of image intensity where the statistical information is represented as a mixture of probability density functions defined in a multi-dimensional image intensity space. Depending on the method to estimate the mixture density functions, three active contour models are proposed: unsupervised multi-dimensional histogram method, half-supervised multivariate Gaussian mixture density method, and supervised multivariate Gaussian mixture density method. The implementation of active contours is done using level sets. The proposed active contour models show robust segmentation capabilities on images where traditional segmentation methods show poor performance. Also, the proposed methods provide a means of autonomous pattern classification by integrating image segmentation and statistical pattern classification. Robust Image Segmentation using Active Contours: Level Set Approaches

[1]  Josiane Zerubia,et al.  Mean field approximation using compound Gauss-Markov random field for edge detection and image restoration , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[2]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[3]  William E. Higgins,et al.  Texture Segmentation using 2-D Gabor Elementary Functions , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Anthony J. Yezzi,et al.  A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.

[5]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[6]  Rachid Deriche,et al.  Unifying boundary and region-based information for geodesic active tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[7]  C. S. Wallace,et al.  Unsupervised Learning Using MML , 1996, ICML.

[8]  L. Evans Measure theory and fine properties of functions , 1992 .

[9]  Arnold W. M. Smeulders,et al.  Color Invariant Snakes , 1998, BMVC.

[10]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Edward R. Dougherty,et al.  Mathematical Morphology in Image Processing , 1992 .

[12]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[13]  Stanley Osher,et al.  Level Set Methods , 2003 .

[14]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[15]  Wesley E. Snyder,et al.  Mean field annealing: a formalism for constructing GNC-like algorithms , 1992, IEEE Trans. Neural Networks.

[16]  Wesley E. Snyder,et al.  Machine Vision , 2003 .

[17]  James S. Duncan,et al.  Deformable boundary finding influenced by region homogeneity , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Xiaotong Shen,et al.  high-dimensional data analysis , 1991 .

[19]  Anthony J. Yezzi,et al.  A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations , 2002, J. Vis. Commun. Image Represent..

[20]  Theodosios Pavlidis,et al.  Integrating Region Growing and Edge Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Wesley E. Snyder,et al.  Discontinuity-Preserving Vector Smoothing of Multivariate MR Images Using Vector Mean Field Annealing , 2004, Journal of Mathematical Imaging and Vision.

[22]  Wesley E. Snyder,et al.  Optimization by Mean Field Annealing , 1988, NIPS.

[23]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  Josiane Zerubia,et al.  A Level Set Model for Image Classification , 1999, International Journal of Computer Vision.

[25]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[26]  Wesley E. Snyder,et al.  Image Relaxation: Restoration and Feature Extraction , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  A. Yezzi,et al.  On the relationship between parametric and geometric active contours , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[28]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Jean Paul Frédéric Serra Morphological Image Operators (Henk J. A. M. Heijmans) , 1996, SIAM Rev..

[30]  R. Deriche,et al.  Coupled Geodesic Active Regions for Image Segmentation , 1999 .

[31]  Nikos Paragios,et al.  Gradient vector flow fast geometric active contours , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Tony F. Chan,et al.  Image segmentation using level sets and the piecewise-constant Mumford-Shah model , 2000 .

[34]  James S. Duncan,et al.  Deformable boundary finding in medical images by integrating gradient and region information , 1996, IEEE Trans. Medical Imaging.

[35]  John F. Haddon,et al.  Image Segmentation by Unifying Region and Boundary Information , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Lawrence H. Staib,et al.  An integrated approach to boundary finding in medical images , 1994, Proceedings of IEEE Workshop on Biomedical Image Analysis.

[37]  D. Landgrebe,et al.  A method for estimating the number of components in a normal mixture density function , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[38]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[39]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[40]  William E. Higgins,et al.  Designing multiple Gabor filters for multitexture image segmentation , 1999 .

[41]  Song-Chun Zhu,et al.  Region Competition and its Analysis: A Unified Theory for Image Segmentation , 1995 .

[42]  G. Bilbro,et al.  Mean-field approximation minimizes relative entropy , 1991 .

[43]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[44]  Nikos Paragios,et al.  A Variational Approach for the Segmentation of the Left Ventricle in Cardiac Image Analysis , 2002, International Journal of Computer Vision.

[45]  Guillermo Sapiro,et al.  From active contours to anisotropic diffusion: connections between basic PDE's in image processing , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[46]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[47]  Marcel Worring,et al.  Watersnakes: Energy-Driven Watershed Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  E. M. Wright,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[49]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[50]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[51]  A. Ben Hamza,et al.  An active contour model for image segmentation: A variational perspective , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[52]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Serge Beucher,et al.  Use of watersheds in contour detection , 1979 .

[54]  William D. Penny,et al.  Bayesian Approaches to Gaussian Mixture Modeling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[56]  Gilles Aubert,et al.  Some Remarks on the Equivalence between 2D and 3D Classical Snakes and Geodesic Active Contours , 2004, International Journal of Computer Vision.

[57]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[58]  R. Tibshirani,et al.  Discriminant Analysis by Gaussian Mixtures , 1996 .

[59]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[60]  Naonori Ueda,et al.  Deterministic annealing EM algorithm , 1998, Neural Networks.

[61]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[62]  N. Paragios A variational approach for the segmentation of the left ventricle in MR cardiac images , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[63]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[64]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[65]  Alan S. Willsky,et al.  Medical image segmentation via coupled curve evolution equations with global constraints , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[66]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[67]  Michel Verleysen Universit Fully Nonparametric Probability Density Function Estimation with Finite Gaussian Mixture Models , 2003 .

[68]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[69]  Jerry L. Prince,et al.  Gradient vector flow: a new external force for snakes , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[70]  David L. Donoho,et al.  Aide-Memoire . High-Dimensional Data Analysis : The Curses and Blessings of Dimensionality , 2000 .

[71]  David B. Cooper,et al.  Bayesian Clustering for Unsupervised Estimation of Surface and Texture Models , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Claude L. Fennema,et al.  Scene Analysis Using Regions , 1970, Artif. Intell..

[73]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[74]  Jerry L. Prince,et al.  Gradient vector flow deformable models , 2000 .

[75]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[76]  C. S. G. Lee,et al.  Robotics: Control, Sensing, Vision, and Intelligence , 1987 .

[77]  Jerry L. Prince,et al.  Generalized gradient vector flow external forces for active contours , 1998, Signal Process..

[78]  N. Paragios,et al.  Gradient vector flow fast geodesic active contours , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[79]  Michel Barlaud,et al.  Region-based active contours using geometrical and statistical features for image segmentation , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[80]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[81]  Gilles Aubert,et al.  Supervised classification for textured images , 2002 .

[82]  Wesley E. Snyder,et al.  Hyperspectral image segmentation using active contours , 2004, SPIE Defense + Commercial Sensing.

[83]  Zhigang Fan,et al.  Maximum likelihood unsupervised textured image segmentation , 1992, CVGIP Graph. Model. Image Process..

[84]  Rachid Deriche,et al.  Geodesic active contours for supervised texture segmentation , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[85]  Wesley E. Snyder,et al.  Optimization of functions with many minima , 1991, IEEE Trans. Syst. Man Cybern..

[86]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[87]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[88]  Gilles Celeux,et al.  A Component-Wise EM Algorithm for Mixtures , 2001, 1201.5913.

[89]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[90]  Wesley E. Snyder,et al.  Segmentation of magnetic resonance images using mean field annealing , 1992, Image Vis. Comput..

[91]  Guillermo Sapiro,et al.  Vector (self) snakes: a geometric framework for color, texture, and multiscale image segmentation , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[92]  Gilles Aubert,et al.  An Elementary Proof of the Equivalence between 2D and 3D Classical Snakes and Geodesic Active Contours , 1998 .

[93]  R. Deriche,et al.  A variational framework for active and adaptative segmentation of vector valued images , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[94]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[95]  J. Sethian TRACKING INTERFACES WITH LEVEL SETS , 1997 .

[96]  Rachid Deriche,et al.  Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach , 2000, ECCV.

[97]  Wesley E. Snyder,et al.  Energy minimization approach to motion estimation , 1992, Signal Process..

[98]  Steven M. LaValle,et al.  A Bayesian Segmentation Methodology for Parametric Image Models , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[99]  Robert B. Fisher,et al.  Hypermedia image processing reference , 1996 .

[100]  L. Vese,et al.  A level set algorithm for minimizing the Mumford-Shah functional in image processing , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[101]  Rachid Deriche,et al.  Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision , 2002, J. Vis. Commun. Image Represent..

[102]  A. Fenster Handbook of Medical Imaging, Processing and Analysis , 2001 .

[103]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[104]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[105]  藤田 広志,et al.  Active Contour Models : Snakes解説 , 2002 .

[106]  Guillermo Sapiro,et al.  Vector-valued active contours , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[107]  Wesley E. Snyder,et al.  Range Image Restoration Using Mean Field Annealing , 1988, NIPS.

[108]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[109]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[110]  David L. Dowe,et al.  Minimum Message Length and Kolmogorov Complexity , 1999, Comput. J..

[111]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[112]  S. Beucher,et al.  Morphological segmentation , 1990, J. Vis. Commun. Image Represent..

[113]  Wesley E. Snyder,et al.  A unified theory of edge-preserving smoothing , 1992 .

[114]  Josiane Zerubia,et al.  Image Classification Using a Variational Approach , 1998 .

[115]  Josiane Zerubia,et al.  Multiphase Evolution and Variational Image Classification , 1999 .

[116]  Olivier D. Faugeras,et al.  Shape gradients for histogram segmentation using active contours , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[117]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[118]  Wesley E. Snyder,et al.  Adaptive edge-preserving smoothing via adaptive-mean-field annealing , 1992, Optics & Photonics.

[119]  Luminita A. Vese,et al.  Multiphase Object Detection and Image Segmentation , 2003 .

[120]  E. Wegman Nonparametric probability density estimation , 1972 .

[121]  Scott T. Acton,et al.  Merging parametric active contours within homogeneous image regions for MRI-based lung segmentation , 2003, IEEE Transactions on Medical Imaging.

[122]  D. P. Mital,et al.  Texture segmentation using Gabor filters , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).

[123]  David G. Stork,et al.  Pattern Classification , 1973 .

[124]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[125]  Ghassan Hamarneh,et al.  Active contour models: application to oral lesion detection in color images , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[126]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[127]  R Malladi,et al.  Image processing via level set curvature flow. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[128]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[129]  R. Tapia,et al.  Nonparametric Probability Density Estimation , 1978 .

[130]  Anthony J. Yezzi,et al.  A curve evolution approach to smoothing and segmentation using the Mumford-Shah functional , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[131]  Jerry L Prince,et al.  A summary of geometric level-set analogues for a general class of parametric active contour and surface models , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[132]  Junaed Sattar Snakes , Shapes and Gradient Vector Flow , 2022 .

[133]  Guillermo Sapiro,et al.  Color Snakes , 1997, Comput. Vis. Image Underst..

[134]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[135]  Pierre Soille,et al.  Morphological gradients , 1993, J. Electronic Imaging.