Managing Adaptive Versatile Environments

The goal of the MavHome project is to develop technologies to manage adaptive versatile environments. In this paper, we present a complete agent architecture for a single inhabitant intelligent environment and discuss the development, deployment, and techniques utilized in our working intelligent environments. Empirical evaluation of our approach has proven its effectiveness at reducing inhabitant interactions by 72.2%

[1]  George Coulouris,et al.  Middleware Support for Context-Aware Multimedia Applications , 2001, DAIS.

[2]  Armando Fox,et al.  Portability, extensibility and robustness in iROS , 2003, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[3]  Tatsuya Yamazaki,et al.  The Ubiquitous Home , 2007 .

[4]  Hani Hagras,et al.  Creating an ambient-intelligence environment using embedded agents , 2004, IEEE Intelligent Systems.

[5]  Sridhar Mahadevan,et al.  Learning Hierarchical Partially Observable Markov Decision Process Models for Robot Navigation , 2001 .

[6]  Armando Fox,et al.  Interactive Workspaces , 2003, Computer.

[7]  Michael C. Mozer,et al.  The adaptive house , 2005 .

[8]  William C. Mann,et al.  The Gator Tech Smart House: a programmable pervasive space , 2005, Computer.

[9]  Yoram Singer,et al.  The Hierarchical Hidden Markov Model: Analysis and Applications , 1998, Machine Learning.

[10]  Diane J. Cook,et al.  The role of prediction algorithms in the MavHome smart home architecture , 2002, IEEE Wirel. Commun..

[11]  Diane J. Cook,et al.  Using information-theoretic principles to discover interesting episodes in a time-ordered input sequence , 2004 .

[12]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[13]  Gregory D. Abowd,et al.  The Location Service : A framework for handling multiple location sensing technologies , 2002 .

[14]  Diane J. Cook,et al.  MavHome: an agent-based smart home , 2003, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[15]  David Stirling,et al.  Zero configuration networking , 2003, CROS.

[16]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[17]  Diane J. Cook,et al.  Active Lezi: an Incremental Parsing Algorithm for Sequential Prediction , 2004, Int. J. Artif. Intell. Tools.

[18]  M.C. Mozer An Intelligent Environment Must Be Adaptive , 1999, IEEE Intelligent Systems and their Applications.

[19]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[20]  Gregory D. Abowd,et al.  The context toolkit: aiding the development of context-enabled applications , 1999, CHI '99.

[21]  E. Batschelet Circular statistics in biology , 1981 .

[22]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[23]  Klara Nahrstedt,et al.  Gaia: A Middleware Infrastructure to Enable Active Spaces1 , 2002 .

[24]  Diane J. Cook,et al.  Improving home automation by discovering regularly occurring device usage patterns , 2003, Third IEEE International Conference on Data Mining.

[25]  Robert Kraut The Internet at home , 1996, CACM.

[26]  Diane J. Cook,et al.  Smart environments - technology, protocols and applications , 2004 .

[27]  G. Abowd,et al.  Architectural Support for Building Automated Capture & Access Applications , 2002 .