Combining local and global visual feature similarity using a text search engine

In this paper we propose a novel approach that allows processing image content based queries expressed as arbitrary combinations of local and global visual features, by using a single index realized as an inverted file. The index was implemented on top of the Lucene retrieval engine. This is particularly useful to allow people to efficiently and interactively check the quality of the retrieval result by exploiting combinations of various features when using content based retrieval systems.

[1]  Jon Louis Bentley,et al.  Multidimensional Binary Search Trees in Database Applications , 1979, IEEE Transactions on Software Engineering.

[2]  Cordelia Schmid,et al.  Improving Bag-of-Features for Large Scale Image Search , 2010, International Journal of Computer Vision.

[3]  Pavel Zezula,et al.  Similarity Search - The Metric Space Approach , 2005, Advances in Database Systems.

[4]  Jürg Nievergelt,et al.  The Grid File: An Adaptable, Symmetric Multikey File Structure , 1984, TODS.

[5]  Pavel Zezula,et al.  M-tree: An Efficient Access Method for Similarity Search in Metric Spaces , 1997, VLDB.

[6]  Mathias Lux,et al.  Lire: lucene image retrieval: an extensible java CBIR library , 2008, ACM Multimedia.

[7]  Gonzalo Navarro,et al.  Effective Proximity Retrieval by Ordering Permutations , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Pasquale Savino,et al.  Approximate similarity search in metric spaces using inverted files , 2008, Infoscale.

[9]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[10]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[11]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[12]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[13]  Pavel Zezula,et al.  Similarity search in metric databases through hashing , 2001, MULTIMEDIA '01.

[14]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[15]  Yannis Avrithis,et al.  Fusing MPEG-7 Visual Descriptors for Image Classification , 2005, ICANN.

[16]  Ronald Fagin,et al.  Comparing top k lists , 2003, SODA '03.

[17]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[18]  Binoy Pinto,et al.  Speeded Up Robust Features , 2011 .

[19]  Claudio Gennaro,et al.  IMPROVING IMAGE SIMILARITY SEARCH EFFECTIVENESS IN A MULTIMEDIA CONTENT MANAGEMENT SYSTEM , 2004 .

[20]  Pierre Tirilly,et al.  Distances and weighting schemes for bag of visual words image retrieval , 2010, MIR '10.

[21]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[22]  Hans-Jörg Schek,et al.  A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces , 1998, VLDB.

[23]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[24]  Claudio Gennaro,et al.  An Approach to Content-Based Image Retrieval Based on the Lucene Search Engine Library , 2010, ECDL.