The complete time/temperature dependence of I-V drift in PCM devices

Phase-change memory (PCM) devices are expected to play a key role in future computing systems as both memory and computing elements. Hence, a comprehensive understanding of the change in the current/voltage (I-V) characteristics of these devices with time and temperature is of considerable importance. Here, we present a unified drift model able to predict the I-V characteristics at any instance in time and at any temperature. The model was validated on large sets of experimental data for an extensive range of time (10 orders of magnitude) and temperatures (180-400 K), different phase-change materials and a collection of 4k cells from a PCM chip.

[1]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[2]  Jörg Behler,et al.  Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe , 2015 .

[3]  Haralampos Pozidis,et al.  Phase-change memory: Feasibility of reliable multilevel-cell storage and retention at elevated temperatures , 2015, 2015 IEEE International Reliability Physics Symposium.

[4]  Alessandro Curioni,et al.  Structural origin of resistance drift in amorphous GeTe , 2016 .

[5]  Daniel Krebs,et al.  The influence of resistance drift on measurements of the activation energy of conduction for phase-change material in random access memory line cells , 2012 .

[6]  Robert M. Hill,et al.  Poole-Frenkel conduction in amorphous solids , 1971 .

[7]  Daniel Krebs,et al.  Subthreshold electrical transport in amorphous phase-change materials , 2015 .

[8]  Matthias Wuttig,et al.  Aging mechanisms in amorphous phase-change materials , 2015, Nature Communications.

[9]  Haralampos Pozidis,et al.  Programming algorithms for multilevel phase-change memory , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[10]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[11]  D. Ielmini,et al.  Reliability Impact of Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part I: Experimental Study , 2009, IEEE Transactions on Electron Devices.

[12]  Haralampos Pozidis,et al.  Non-resistance-based cell-state metric for phase-change memory , 2011 .

[13]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[14]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[15]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[16]  Abu Sebastian,et al.  Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices , 2015, IEEE Electron Device Letters.

[17]  M. Breitwisch,et al.  Novel Lithography-Independent Pore Phase Change Memory , 2007, 2007 IEEE Symposium on VLSI Technology.

[18]  E. Eleftheriou,et al.  Drift-Tolerant Multilevel Phase-Change Memory , 2011, 2011 3rd IEEE International Memory Workshop (IMW).

[19]  Haralampos Pozidis,et al.  A collective relaxation model for resistance drift in phase change memory cells , 2015, 2015 IEEE International Reliability Physics Symposium.

[20]  Matthias Wuttig,et al.  Relation between bandgap and resistance drift in amorphous phase change materials , 2015, Scientific Reports.

[21]  Daniel Krebs,et al.  Crystal growth within a phase change memory cell , 2014, Nature Communications.

[22]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[23]  A. Sebastian,et al.  Drift-resilient cell-state metric for multilevel phase-change memory , 2011, 2011 International Electron Devices Meeting.

[24]  A. Knoll,et al.  Relaxation kinetics of nanoscale indents in a polymer glass. , 2009, Physical review letters.

[25]  Scott C. Lewis,et al.  A 256-Mcell Phase-Change Memory Chip Operating at $2{+}$ Bit/Cell , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.