Information metamaterials – from effective media to real-time information processing systems

Abstract Metamaterials have been characterized by effective medium parameters over the past decades due to the subwavelength nature of meta-atoms. Once the metamaterials are fabricated, their functions become fixed or tunable. Recently, the concept of digital metamaterials has been introduced, in which, for instance, the constitutive 1-bit meta-atom is digitalized as “0” or “1” corresponding to two opposite electromagnetic (EM) responses. The digital metamaterials set up a bridge between the physical world and the information world. More interestingly, when the digital meta-atom is programmable, a single metamaterial can be used to realize different functions when programmed with different coding sequences. Moreover, as the states of programmable meta-atoms can be quickly switched, it enables the wave-based information coding and processing on the physical level of metamaterials in real time. For these reasons, we prefer to call digital metamaterials with programmable meta-atoms as “information metamaterials.” In this review article, we introduce two basic principles for information metamaterials: Shannon entropy on metamaterials to measure the information capacity quantitatively and digital convolution on metamaterials to manipulate the beam steering. Afterwards, two proof-of-concept imaging systems based on information metamaterials, i.e. programmable hologram and programmable imager, are presented, showing more powerful abilities than the traditional counterparts. Furthermore, we discuss the time-modulated information metamaterial that enables efficient and accurate manipulations of spectral harmonic distributions and brings new physical phenomena such as frequency cloaking and velocity illusion. As a relevant application of time-modulated information metamaterials, we propose a novel architecture of wireless communication, which simplifies the modern wireless communication system. Finally, the future trends of information metamaterials are predicted.

[1]  Fan Yang,et al.  A 1-Bit $10 \times 10$ Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment , 2016, IEEE Transactions on Antennas and Propagation.

[2]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[3]  Shuang Zhang,et al.  Electromagnetic reprogrammable coding-metasurface holograms , 2017, Nature Communications.

[4]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[5]  Qiang Cheng,et al.  Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves , 2016, Light: Science & Applications.

[6]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[7]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[8]  Pablo Padilla,et al.  Electronically Reconfigurable Transmitarray at Ku Band for Microwave Applications , 2010, IEEE Transactions on Antennas and Propagation.

[9]  Qiang Cheng,et al.  Space-time-coding digital metasurfaces , 2018, Nature Communications.

[10]  Janos Perczel,et al.  Visible-frequency hyperbolic metasurface , 2015, Nature.

[11]  Houtong Chen,et al.  Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials , 2015 .

[12]  Filippo Capolino,et al.  Theory and Phenomena of Metamaterials , 2009 .

[13]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[14]  Eduard Alarcón,et al.  Computing and Communications for the Software-Defined Metamaterial Paradigm: A Context Analysis , 2018, IEEE Access.

[15]  Said Zouhdi,et al.  Metamaterials and Plasmonics: Fundamentals, Modelling, Applications , 2009 .

[16]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[17]  Hubregt J. Visser,et al.  Array and Phased Array Antenna Basics , 2005 .

[18]  Laurent Dussopt,et al.  1-Bit Reconfigurable Unit Cell for Ka-Band Transmitarrays , 2016, IEEE Antennas and Wireless Propagation Letters.

[19]  M. Okoniewski,et al.  Lenses for Circular Polarization Using Planar Arrays of Rotated Passive Elements , 2011, IEEE Transactions on Antennas and Propagation.

[20]  Tie Jun Cui,et al.  Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials , 2017 .

[21]  W. Kummer,et al.  Ultra-low sidelobes from time-modulated arrays , 1963 .

[22]  Xiang Wan,et al.  Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging , 2016, Scientific Reports.

[23]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[24]  Tie Jun Cui,et al.  Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves , 2017 .

[25]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[26]  Tie Jun Cui,et al.  Transmission‐Reflection‐Integrated Multifunctional Coding Metasurface for Full‐Space Controls of Electromagnetic Waves , 2018, Advanced Functional Materials.

[27]  Shuo Liu,et al.  Information entropy of coding metasurface , 2016, Light: Science & Applications.

[28]  David R. Smith,et al.  Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale , 2017, Scientific Reports.

[29]  Yuri S. Kivshar,et al.  Functional and nonlinear optical metasurfaces , 2015 .

[30]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Andrea Alù,et al.  Machine-learning reprogrammable metasurface imager , 2019, Nature Communications.

[32]  Xiang Wan,et al.  Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams , 2016, Advanced science.

[33]  H. Kamoda,et al.  60-GHz Electronically Reconfigurable Large Reflectarray Using Single-Bit Phase Shifters , 2011, IEEE Transactions on Antennas and Propagation.

[34]  Andrea Alù,et al.  Recent progress in gradient metasurfaces , 2016 .

[35]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[36]  Mathias Fink,et al.  Optimally diverse communication channels in disordered environments with tuned randomness , 2018, Nature Electronics.

[37]  Ralf Eckhardt,et al.  Mode‐beating spectroscopy in a few‐mode optical guide , 1993 .

[38]  Laurent Daudet,et al.  Imaging With Nature: Compressive Imaging Using a Multiply Scattering Medium , 2013, Scientific Reports.

[39]  Tie Jun Cui,et al.  Large-scale transmission-type multifunctional anisotropic coding metasurfaces in millimeter-wave frequencies , 2017 .

[40]  Qiang Cheng,et al.  Frequency‐Dependent Dual‐Functional Coding Metasurfaces at Terahertz Frequencies , 2016 .

[41]  Harry A. Atwater,et al.  Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence , 2009 .

[42]  M. R. Chaharmir,et al.  A Wideband Transmitarray Using Dual-Resonant Double Square Rings , 2010, IEEE Transactions on Antennas and Propagation.

[43]  Shi Jin,et al.  Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems , 2018, National science review.

[44]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[45]  H. Shanks,et al.  FOUR-DIMENSIONAL ELECTROMAGNETIC RADIATORS , 1959 .

[46]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[47]  David R. Smith,et al.  Reversing Light: Negative Refraction , 2004 .

[48]  R. Gillard,et al.  Dual Linearly-Polarized Unit-Cells With Nearly 2-Bit Resolution For Reflectarray Applications In X-Band , 2012, IEEE Transactions on Antennas and Propagation.

[49]  Yuri Kivshar,et al.  Structural tunability in metamaterials , 2009, 0907.2303.

[50]  Wei Li,et al.  Metamaterial perfect absorber based hot electron photodetection. , 2014, Nano letters.

[51]  Chau Yuen,et al.  Large Intelligent Surfaces for Energy Efficiency in Wireless Communication , 2018, ArXiv.

[52]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[53]  T. Tao,et al.  Programmable Vanishing Multifunctional Optics , 2018, Advanced science.

[54]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[55]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[56]  Anthony Grbic,et al.  Efficient light bending with isotropic metamaterial Huygens' surfaces. , 2014, Nano letters.

[57]  Laurent Dussopt,et al.  Wideband 400-Element Electronically Reconfigurable Transmitarray in X Band , 2013, IEEE Transactions on Antennas and Propagation.

[58]  G. Di Massa,et al.  Multilayer Antenna-Filter Antenna for Beam-Steering Transmit-Array Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[59]  M.E. Potter,et al.  On the Selection of the Number of Bits to Control a Dynamic Digital MEMS Reflectarray , 2008, IEEE Antennas and Wireless Propagation Letters.

[60]  S. Hum,et al.  A Wideband Reconfigurable Transmitarray Element , 2012, IEEE Transactions on Antennas and Propagation.

[61]  Zahra Kavehvash,et al.  Analog Computing Using Graphene-based Metalines , 2015, Optics letters.

[62]  F. Guinea,et al.  Mid-infrared plasmons in scaled graphene nanostructures , 2012, 1209.1984.

[63]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[64]  Feng Xu,et al.  A Survey on the Low-Dimensional-Model-based Electromagnetic Imaging , 2018, Found. Trends Signal Process..

[65]  Thomas Fromenteze,et al.  Single-frequency microwave imaging with dynamic metasurface apertures , 2017, 1704.03303.

[66]  A. Tennant,et al.  Time-Switched Array Analysis of Phase-Switched Screens , 2009, IEEE Transactions on Antennas and Propagation.

[67]  Xiang Li,et al.  Controlling spectral energies of all harmonics in programmable way using time-domain digital coding metasurface , 2018, ArXiv.

[68]  Xiangang Luo,et al.  Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface , 2017, Scientific Reports.

[69]  Shulabh Gupta,et al.  Finite-Difference Time-Domain Modeling of Space–Time-Modulated Metasurfaces , 2016, IEEE Transactions on Antennas and Propagation.

[70]  David R. Smith,et al.  Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas. , 2018, Applied optics.

[71]  Lianlin Li,et al.  Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface , 2016, Scientific Reports.

[72]  Alan Tennant,et al.  Beam steering techniques for time-switched arrays , 2009, 2009 Loughborough Antennas & Propagation Conference.

[73]  Tie Jun Cui,et al.  Information metamaterials and metasurfaces , 2017 .

[74]  Ruilin Yao,et al.  Directional Modulation Based on 4-D Antenna Arrays , 2014, IEEE Transactions on Antennas and Propagation.

[75]  Wai Lam Chan,et al.  A spatial light modulator for terahertz beams , 2009 .

[76]  Andrea Massa,et al.  Reconfigurable Electromagnetics Through Metamaterials—A Review , 2015, Proceedings of the IEEE.

[77]  David R. Smith,et al.  Microwave Imaging Using a Disordered Cavity with a Dynamically Tunable Impedance Surface , 2016 .

[78]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[79]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[81]  Philipp del Hougne,et al.  Leveraging Chaos for Wave-Based Analog Computation: Demonstration with Indoor Wireless Communication Signals , 2018, Physical Review X.

[82]  Patrick Mounaix,et al.  Tunable terahertz metamaterials with negative permeability , 2009 .

[83]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[84]  David R. Smith,et al.  Negative refractive index metamaterials , 2006 .

[85]  Jian Tang,et al.  Light‐Controllable Digital Coding Metasurfaces , 2018, Advanced science.

[86]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[87]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[88]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[89]  Yi Zheng,et al.  High-rectification near-field thermal diode using phase change periodic nanostructure , 2016 .

[90]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[91]  Yang Wang,et al.  Experimental Time-Modulated Reflector Array , 2014, IEEE Transactions on Antennas and Propagation.

[92]  W.C.B. Peatman,et al.  Quarter‐micrometer GaAs Schottky barrier diode with high video responsivity at 118 μm , 1992 .

[93]  B. D. Nguyen,et al.  Unit-Cell Loaded With PIN Diodes for 1-Bit Linearly Polarized Reconfigurable Transmitarrays , 2019, IEEE Antennas and Wireless Propagation Letters.

[94]  Zhengyou Liu,et al.  Coding Acoustic Metasurfaces , 2017, Advanced materials.

[95]  V. Shalaev,et al.  Time-Varying Metasurfaces and Lorentz Non-Reciprocity , 2015, 1507.04836.

[96]  A. S. Barker,et al.  Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature , 1966 .

[97]  Tie Jun Cui,et al.  Spin-Controlled Multiple Pencil Beams and Vortex Beams with Different Polarizations Generated by Pancharatnam-Berry Coding Metasurfaces. , 2017, ACS applied materials & interfaces.

[98]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[99]  David R. Smith,et al.  Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera. , 2018, Optics express.

[100]  Chih-Chieh Cheng,et al.  A Programmable Lens-Array Antenna With Monolithically Integrated MEMS Switches , 2009, IEEE Transactions on Microwave Theory and Techniques.

[101]  Steven A. Cummer,et al.  Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings , 2008 .

[102]  David R. Smith,et al.  Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures , 2018, Optica.

[103]  A. Alú,et al.  Space-time gradient metasurfaces , 2015, 1506.00690.

[104]  Nader Engheta,et al.  Digital metamaterials. , 2014, Nature materials.

[105]  Leonid L Doskolovich,et al.  Optical computation of the Laplace operator using phase-shifted Bragg grating. , 2014, Optics express.

[106]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[107]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[108]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.