Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting

[1]  S. Goel Wear Mechanism of Diamond Tools During Ultra Precision Machining , 2011 .

[2]  Yanfa Yan,et al.  On the existence of Si–C double bonded graphene-like layers , 2009 .

[3]  C. Zorman Silicon carbide as a material for biomedical microsystems , 2009, 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS.

[4]  Jiwang Yan,et al.  Mechanism for material removal in diamond turning of reaction-bonded silicon carbide , 2009 .

[5]  M. Rahman,et al.  Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation , 2007 .

[6]  Alexander Mattausch,et al.  Ab initio study of graphene on SiC. , 2007, Physical review letters.

[7]  J. Patten,et al.  Ductile Regime Nanomachining of Single-Crystal Silicon Carbide , 2005 .

[8]  Xichun Luo,et al.  Modeling and simulation of the tool wear in nanometric cutting , 2003 .

[9]  N. Chandrasekaran,et al.  Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach , 1998 .

[10]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[11]  Paul Shore,et al.  Machining of Optical Surfaces in Brittle Materials using an Ultra-Precision Machine Tool , 1995 .

[12]  Tersoff Chemical order in amorphous silicon carbide. , 1994, Physical review. B, Condensed matter.

[13]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[14]  Ronald O. Scattergood,et al.  Ductile‐Regime Machining of Germanium and Silicon , 1990 .

[15]  J. Wilks,et al.  Performance of diamonds as cutting tools for precision machining , 1980 .

[16]  B. Lawn,et al.  Hardness, Toughness, and Brittleness: An Indentation Analysis , 1979 .

[17]  R. Reuben,et al.  Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process , 2013 .

[18]  Robert Lewis Reuben,et al.  Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide , 2012 .

[19]  Peter Gumbsch,et al.  Anisotropic mechanical amorphization drives wear in diamond. , 2011, Nature materials.

[20]  M. Wijesundara,et al.  Silicon Carbide Electronics , 2011 .

[21]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .

[22]  J. Patten,et al.  Comparison between numerical simulations and experiments for single-point diamond turning of single-crystal silicon carbide , 2008 .

[23]  L. Hobbs,et al.  Influence of Interatomic Potentials in MD Investigation of Ordering in a -SiC , 2000 .

[24]  J. Patten High Pressure Phase Transformation Analysis and Molecular Dynamics Simulations of Single Point Diamond Turning of Germanium. , 1996 .