On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime
暂无分享,去创建一个
[1] Peter A. Markowich,et al. A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[2] B. Desjardins,et al. SEMICLASSICAL LIMIT OF THE DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION , 2000 .
[3] C. David Levermore,et al. The Semiclassical Limit of the Defocusing NLS Hierarchy , 1999 .
[4] Peter A. Markowich,et al. Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.
[5] P. Miller,et al. On the semiclassical limit of the focusing nonlinear Schrödinger equation , 1998 .
[6] P. Markowich,et al. Homogenization limits and Wigner transforms , 1997 .
[7] P. Markowich,et al. A Wigner‐function approach to (semi)classical limits: Electrons in a periodic potential , 1994 .
[8] D. Pathria,et al. Pseudo-spectral solution of nonlinear Schro¨dinger equations , 1990 .
[9] Mickens. Stable explicit schemes for equations of Schrödinger type. , 1989, Physical review. A, General physics.
[10] Tony F. Chan,et al. Stability analysis of difference schemes for variable coefficient Schro¨dinger type equations , 1987 .
[11] Tony F. Chan,et al. Stable explicit schemes for equations of the Schro¨dinger type , 1986 .
[12] J. Pasciak. Spectral and pseudospectral methods for advection equations , 1980 .
[13] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[14] P. Markowich,et al. Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .
[15] D. McLaughlin,et al. Semiclassical Behavior in the NLS Equation: Optical Shocks - Focusing Instabilities , 1994 .
[16] C. David Levermore,et al. The Behavior of Solutions of the NLS Equation in the Semiclassical Limit , 1994 .
[17] P. Gérard. Microlocal defect measures , 1991 .
[18] L. Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[19] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .