Networking Big Data: Definition, Key Technologies and Challenging Issues of Transmission

The big data has been touted as the new oil, which is expected to transform our society. Specially, the data source from the networking domain (networking big data) has higher volume, velocity, and variety compared with others. Thus in this article, we make a short survey on existing works investigating key technologies of networking big data, and propose challenging issues of transmission that is the most important stage for networking big data.

[1]  Lu Liu,et al.  Muppet: MapReduce-Style Processing of Fast Data , 2012, Proc. VLDB Endow..

[2]  Oren Etzioni,et al.  Named Entity Recognition in Tweets: An Experimental Study , 2011, EMNLP.

[3]  Joseph M. Hellerstein,et al.  MapReduce Online , 2010, NSDI.

[4]  Ken Yocum,et al.  Ad-hoc data processing in the cloud , 2008, Proc. VLDB Endow..

[5]  Prashant Malik,et al.  Cassandra: structured storage system on a P2P network , 2009, PODC '09.

[6]  Wil M. P. van der Aalst,et al.  Process Mining: Overview and Opportunities , 2012, ACM Trans. Manag. Inf. Syst..

[7]  Hua Li,et al.  Enhancing text clustering by leveraging Wikipedia semantics , 2008, SIGIR '08.

[8]  Sean Quinlan,et al.  GFS: Evolution on Fast-forward , 2009, ACM Queue.

[9]  Min Song,et al.  Biomedical text categorization with concept graph representations using a controlled vocabulary , 2012, BIOKDD '12.

[10]  Aleksandr Ometov,et al.  Towards Big Data Visualization for Augmented Reality , 2014, 2014 IEEE 16th Conference on Business Informatics.

[11]  Seref Sagiroglu,et al.  Big data: A review , 2013, 2013 International Conference on Collaboration Technologies and Systems (CTS).

[12]  Wang Yuan,et al.  Network Big Data: Present and Future: Network Big Data: Present and Future , 2014 .

[13]  Alexander G. Gray,et al.  On-line anomaly detection of deployed software: a statistical machine learning approach , 2006, SOQUA '06.

[14]  Jingren Zhou,et al.  SCOPE: easy and efficient parallel processing of massive data sets , 2008, Proc. VLDB Endow..

[15]  Sanjeev Kumar,et al.  Finding a Needle in Haystack: Facebook's Photo Storage , 2010, OSDI.

[16]  Xue-wen Chen,et al.  Big Data Deep Learning: Challenges and Perspectives , 2014, IEEE Access.

[17]  Wei Guo,et al.  Store, schedule and switch - A new data delivery model in the big data era , 2013, 2013 15th International Conference on Transparent Optical Networks (ICTON).

[18]  Geoffrey E. Hinton Learning multiple layers of representation , 2007, Trends in Cognitive Sciences.

[19]  Yonggang Wen,et al.  Toward Scalable Systems for Big Data Analytics: A Technology Tutorial , 2014, IEEE Access.

[20]  Steven J. Simske,et al.  Automatic text summarization and small-world networks , 2011, DocEng '11.

[21]  Wilson C. Hsieh,et al.  Bigtable: A Distributed Storage System for Structured Data , 2006, TOCS.

[22]  J. Manyika Big data: The next frontier for innovation, competition, and productivity , 2011 .

[23]  Nei Kato,et al.  Context-aware task allocation for fast parallel big data processing in optical-wireless networks , 2014, 2014 International Wireless Communications and Mobile Computing Conference (IWCMC).

[24]  Elisa Bertino,et al.  State-of-the-art in privacy preserving data mining , 2004, SGMD.

[25]  Werner Vogels,et al.  Dynamo: amazon's highly available key-value store , 2007, SOSP.

[26]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[27]  Howard Gobioff,et al.  The Google file system , 2003, SOSP '03.

[28]  Rami G. Melhem,et al.  Applying statistical machine learning to multicore voltage & frequency scaling , 2010, Conf. Computing Frontiers.

[29]  Yang Song,et al.  Storage Mining: Where IT Management Meets Big Data Analytics , 2013, 2013 IEEE International Congress on Big Data.

[30]  Sankar K. Pal,et al.  Web mining in soft computing framework: relevance, state of the art and future directions , 2002, IEEE Trans. Neural Networks.

[31]  David R. Karger,et al.  Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the World Wide Web , 1997, STOC '97.

[32]  Michael Burrows,et al.  The Chubby Lock Service for Loosely-Coupled Distributed Systems , 2006, OSDI.

[33]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[34]  Xiaohua Hu,et al.  A Framework for Semisupervised Feature Generation and Its Applications in Biomedical Literature Mining , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[35]  Douglas Crockford,et al.  The application/json Media Type for JavaScript Object Notation (JSON) , 2006, RFC.

[36]  Andrey Brito,et al.  Scalable and Low-Latency Data Processing with Stream MapReduce , 2011, 2011 IEEE Third International Conference on Cloud Computing Technology and Science.

[37]  Haiyan Zhao,et al.  Research on the Merging of Feature Models: Research on the Merging of Feature Models , 2014 .

[38]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[39]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.