TMS in the parietal cortex: Updating representations for attention and action

Transcranial magnetic stimulation (TMS) is one of the most recent techniques to have been used in investigations of the parietal cortex but already a number of studies have employed it as a tool in investigations of attentional and sensorimotor processes in the human parietal cortices. The high temporal resolution of TMS has proved to be a particular strength of the technique and the experiments have led to hypotheses about when circumscribed regions of parietal cortex are critical for specific attentional and sensorimotor processes. A consistent theme that runs through many reports is that of a critical contribution of parietal areas when attention or movements are re-directed and representations for attention or action must be updated.

[1]  S. Boniface,et al.  Magnetic brain stimulation with a double coil: the importance of coil orientation. , 1992, Electroencephalography and clinical neurophysiology.

[2]  J. Marshall,et al.  Left neglect for near but not far space in man , 1991, Nature.

[3]  Z. Kapoula,et al.  Effects of transcranial magnetic stimulation of the posterior parietal cortex on saccades and vergence , 2001, Neuroreport.

[4]  Christopher Kennard,et al.  Differential cortical activation during voluntary and reflexive saccades in man , 2003, NeuroImage.

[5]  R. Passingham,et al.  The left parietal cortex and motor attention , 1997, Neuropsychologia.

[6]  U. Mosimann,et al.  Hemispheric asymmetry in visuospatial attention assessed with transcranial magnetic stimulation , 2002, Experimental Brain Research.

[7]  J. Seal,et al.  Activity of neurons in area 5 during a simple arm movement in monkeys before and after deafferentation of the trained limb , 1982, Brain Research.

[8]  R. Passingham,et al.  Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. , 1998, Brain : a journal of neurology.

[9]  J. Mattingley,et al.  Parietal neglect and visual awareness , 1998, Nature Neuroscience.

[10]  B. Gulyás,et al.  Functional Organization of the Human Visual Cortex , 1993 .

[11]  R. Goebel,et al.  The Dynamics of Interhemispheric Compensatory Processes in Mental Imagery , 2005, Science.

[12]  Hartwig R. Siebner,et al.  BOLD MRI responses to repetitive TMS over human dorsal premotor cortex , 2005, NeuroImage.

[13]  René M. Müri,et al.  Hemispheric asymmetry in cortical control of memory-guided saccades. A transcranial magnetic stimulation study. , 2000, Neuropsychologia.

[14]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[15]  M. Corbetta,et al.  Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing , 2003, The Journal of Neuroscience.

[16]  C Caltagirone,et al.  Parieto-frontal interactions in visual-object and visual-spatial working memory: evidence from transcranial magnetic stimulation. , 2001, Cerebral cortex.

[17]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple stimulus displays: II. responses are suppressed at the cued location. , 2001, Cerebral cortex.

[18]  R T Knight,et al.  Neural representations of skilled movement. , 2000, Brain : a journal of neurology.

[19]  Scott T. Grafton,et al.  A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements , 2002, Neuropsychologia.

[20]  K. Zilles,et al.  Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. , 2000, Brain : a journal of neurology.

[21]  Penny A. MacDonald,et al.  The role of parietal cortex in awareness of self-generated movements: a transcranial magnetic stimulation study. , 2003, Cerebral cortex.

[22]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[23]  J. Hornak,et al.  Visual neglect in the monkey. Representation and disconnection. , 1997, Brain : a journal of neurology.

[24]  Igor Schindler,et al.  An exploration of the role of the superior temporal gyrus in visual search and spatial perception using TMS , 2014 .

[25]  Carmel Mevorach,et al.  Attending to local form while ignoring global aspects depends on handedness: evidence from TMS , 2005, Nature Neuroscience.

[26]  Richard A. Andersen,et al.  FMRI evidence for a 'parietal reach region' in the human brain , 2003, Experimental Brain Research.

[27]  A. Treisman Perceptual grouping and attention in visual search for features and for objects. , 1982, Journal of experimental psychology. Human perception and performance.

[28]  M. Corbetta,et al.  An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention , 2005, The Journal of Neuroscience.

[29]  J. D. Crawford,et al.  Spatial Transformations for Eye–Hand Coordination , 2004 .

[30]  S. Ferber,et al.  Spatial awareness is a function of the temporal not the posterior parietal lobe , 2001, Nature.

[31]  K. Zilles,et al.  Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and Monkeys , 2002, Neuron.

[32]  N. Kanwisher,et al.  Neuroimaging of cognitive functions in human parietal cortex , 2001, Current Opinion in Neurobiology.

[33]  C. Bard,et al.  Deafferentation and pointing with visual double-step perturbations , 1999, Experimental Brain Research.

[34]  A. Barker,et al.  Transcranial magnetic stimulation , 2001, Experimental Brain Research.

[35]  Scott T. Grafton,et al.  Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp , 2005, Nature Neuroscience.

[36]  O Hikosaka,et al.  Visualization of the information flow through human oculomotor cortical regions by transcranial magnetic stimulation. , 1998, Journal of neurophysiology.

[37]  E. Renzi,et al.  Imitating gestures. A quantitative approach to ideomotor apraxia. , 1980, Archives of neurology.

[38]  G. Kerr,et al.  The effect of electromagnetic stimulation of the posterior parietal cortex on eye movements , 1992, Eye.

[39]  M. Corbetta,et al.  Neural basis and recovery of spatial attention deficits in spatial neglect , 2005, Nature Neuroscience.

[40]  Gregor Thut,et al.  Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention. , 2005, Cerebral cortex.

[41]  R. Andersen,et al.  Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. , 1998, Journal of neurophysiology.

[42]  Thomas Dierks,et al.  Tracking the Mind's Image in the Brain II Transcranial Magnetic Stimulation Reveals Parietal Asymmetry in Visuospatial Imagery , 2002, Neuron.

[43]  Volkmar Glauche,et al.  Functional properties and interaction of the anterior and posterior intraparietal areas in humans , 2003, The European journal of neuroscience.

[44]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[45]  D. Ostry,et al.  Stimulation of the Posterior Parietal Cortex Interferes with Arm Trajectory Adjustments during the Learning of New Dynamics , 2004, The Journal of Neuroscience.

[46]  Christoph M. Michel,et al.  Visually induced activity in human frontal motor areas during simple visuomotor performance , 2000, Neuroreport.

[47]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[48]  C. D. Frith,et al.  Filtering of Distractors during Visual Search Studied by Positron Emission Tomography , 2002, NeuroImage.

[49]  Á. Pascual-Leone,et al.  Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex , 2001, Nature Neuroscience.

[50]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[51]  Masako Okamoto,et al.  Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping , 2004, NeuroImage.

[52]  Leslie G. Ungerleider,et al.  The neural basis of biased competition in human visual cortex , 2001, Neuropsychologia.

[53]  P. Matthews,et al.  Defining a left-lateralized response specific to intelligible speech using fMRI. , 2003, Cerebral cortex.

[54]  M. Jeannerod,et al.  Perception of self-generated movement following left parietal lesion. , 1999, Brain : a journal of neurology.

[55]  C. Kennard,et al.  Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. , 2001, Brain : a journal of neurology.

[56]  D. Gitelman,et al.  Covert Visual Spatial Orienting and Saccades: Overlapping Neural Systems , 2000, NeuroImage.

[57]  P M Rossini,et al.  Paired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex , 2000, The Journal of physiology.

[58]  Gereon R Fink,et al.  Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study , 2004, NeuroImage.

[59]  P. Goldman-Rakic,et al.  Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. , 2000, Journal of neurophysiology.

[60]  Nikolaos Smyrnis,et al.  Single-pulse transcranial magnetic stimulation of parietal and prefrontal areas in a memory delay arm pointing task. , 2003, Journal of neurophysiology.

[61]  A. Milner,et al.  Automatic avoidance of obstacles is a dorsal stream function: evidence from optic ataxia , 2004, Nature Neuroscience.

[62]  M. Rushworth,et al.  Attention Systems and the Organization of the Human Parietal Cortex , 2001, The Journal of Neuroscience.

[63]  Matthew F. S. Rushworth,et al.  The Mental Number Line and the Human Angular Gyrus , 2001, NeuroImage.

[64]  Etienne Olivier,et al.  A Deficit in Covert Attention after Parietal Cortex Inactivation in the Monkey , 2004, Neuron.

[65]  A. Pascual-Leone,et al.  Studies in Cognition: The Problems Solved and Created by Transcranial Magnetic Stimulation , 2003, Journal of Cognitive Neuroscience.

[66]  Brian Butterworth,et al.  Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing , 2005, Neuropsychologia.

[67]  Jon Driver,et al.  Revisiting Previously Searched Locations in Visual Neglect: Role of Right Parietal and Frontal Lesions in Misjudging Old Locations as New , 2005, Journal of Cognitive Neuroscience.

[68]  René Müri,et al.  Craniotopic updating of visual space across saccades in the human posterior parietal cortex , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[69]  J. Mattingley,et al.  Fast and slow parietal pathways mediate spatial attention , 2004, Nature Neuroscience.

[70]  R. Weale Analysis of Visual Behaviour , 1983 .

[71]  M. Goodale,et al.  Visual control of reaching movements without vision of the limb , 2004, Experimental Brain Research.

[72]  M. Husain,et al.  Where the Eye Looks, the Hand Follows Limb-Dependent Magnetic Misreaching in Optic Ataxia , 2005, Current Biology.

[73]  Leslie G. Ungerleider,et al.  Posterior parietal cortex and the filtering of distractors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[74]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[75]  Maurizio Gentilucci,et al.  Early movement impairments in a patient recovering from optic ataxia , 2004, Neuropsychologia.

[76]  D. Boussaoud,et al.  Spatial attention and memory versus motor preparation: premotor cortex involvement as revealed by fMRI. , 2002, Journal of neurophysiology.

[77]  H. Sakata,et al.  Neural representation of three-dimensional features of manipulation objects with stereopsis , 1999, Experimental Brain Research.

[78]  C. Caltagirone,et al.  Modulation of excitatory and inhibitory circuits for visual awareness in the human right parietal cortex , 2004, Experimental Brain Research.

[79]  Neil G. Muggleton,et al.  Timing of Target Discrimination in Human Frontal Eye Fields , 2004, Journal of Cognitive Neuroscience.

[80]  Alvaro Pascual-Leone,et al.  Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat , 2005, Experimental Brain Research.

[81]  G. Humphreys,et al.  Detection by action: neuropsychological evidence for action-defined templates in search , 2001, Nature Neuroscience.

[82]  Chi-Hung Juan,et al.  Feedback to V1: a reverse hierarchy in vision , 2003, Experimental Brain Research.

[83]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[84]  C. Kennard,et al.  The anatomy of visual neglect , 2003 .

[85]  Jon Driver,et al.  Spatial working memory capacity in unilateral neglect. , 2004, Brain : a journal of neurology.

[86]  J. F. Kalaska,et al.  Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period , 2004, Experimental Brain Research.

[87]  K. R. Mills,et al.  Magnetic Stimulation of the Human Nervous System , 2000 .

[88]  Sara Torriero,et al.  rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory , 2005, NeuroImage.

[89]  Timothy Edward John Behrens,et al.  Connection patterns distinguish 3 regions of human parietal cortex. , 2006, Cerebral cortex.

[90]  R M Müri,et al.  Effects of single-pulse transcranial magnetic stimulation over the prefrontal and posterior parietal cortices during memory-guided saccades in humans. , 1996, Journal of neurophysiology.

[91]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[92]  Jon Driver,et al.  Visual Selection and Posterior Parietal Cortex: Effects of Repetitive Transcranial Magnetic Stimulation on Partial Report Analyzed by Bundesen's Theory of Visual Attention , 2005, The Journal of Neuroscience.

[93]  S. P. Wise,et al.  Primate frontal cortex: neuronal activity following attentional versus intentional cues , 2004, Experimental Brain Research.

[94]  M. Corbetta,et al.  Quantitative analysis of attention and detection signals during visual search. , 2003, Journal of neurophysiology.

[95]  Uwe Herwig,et al.  Using the International 10-20 EEG System for Positioning of Transcranial Magnetic Stimulation , 2004, Brain Topography.

[96]  Alan Cowey,et al.  Temporal aspects of visual search studied by transcranial magnetic stimulation , 1997, Neuropsychologia.

[97]  Alan Cowey,et al.  Transcranial magnetic stimulation and cognitive neuroscience , 2000, Nature Reviews Neuroscience.

[98]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple-stimulus displays: I. neurons encode the location of the salient stimulus. , 2001, Cerebral cortex.

[99]  H. Duffau,et al.  Direct Evidence for a Parietal-Frontal Pathway Subserving Spatial Awareness in Humans , 2005, Science.

[100]  Philippe A. Chouinard,et al.  Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. , 2003, Journal of neurophysiology.

[101]  R. J. Seitz,et al.  Activation of frontoparietal cortices during memorized triple‐step sequences of saccadic eye movements: an fMRI study , 2001, The European journal of neuroscience.

[102]  Alan Cowey,et al.  Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation , 1998, Neuropsychologia.

[103]  Jon Driver,et al.  Impaired Spatial Working Memory: One Component of the Visual Neglect Syndrome? , 2004, Cortex.

[104]  M. Desmurget,et al.  An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia , 2000, Nature Neuroscience.

[105]  M. Rushworth,et al.  Complementary localization and lateralization of orienting and motor attention , 2001, Nature Neuroscience.

[106]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[107]  C Dohle,et al.  Human anterior intraparietal area subserves prehension , 1998, Neurology.

[108]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[109]  T. Paus Imaging the brain before, during, and after transcranial magnetic stimulation , 1998, Neuropsychologia.

[110]  J. Rothwell,et al.  Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits , 2004, The European journal of neuroscience.

[111]  Scott T. Grafton,et al.  Functional Anatomy of Nonvisual Feedback Loops during Reaching: A Positron Emission Tomography Study , 2001, The Journal of Neuroscience.

[112]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[113]  P. van Donkelaar,et al.  Eye-hand interactions differ in the human premotor and parietal cortices. , 2002, Human movement science.

[114]  H. Karnath,et al.  Using human brain lesions to infer function: a relic from a past era in the fMRI age? , 2004, Nature Reviews Neuroscience.

[115]  M. Perenin,et al.  Cortical control of visually guided reaching: evidence from patients with optic ataxia. , 2005, Cerebral cortex.

[116]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[117]  C. Marsden,et al.  Corticocortical inhibition in human motor cortex. , 1993, The Journal of physiology.

[118]  P. Goldman-Rakic,et al.  Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. , 1998, Journal of neurophysiology.

[119]  M. Rushworth,et al.  The left parietal and premotor cortices: motor attention and selection , 2003, NeuroImage.

[120]  Alan C. Evans,et al.  Transcranial Magnetic Stimulation during Positron Emission Tomography: A New Method for Studying Connectivity of the Human Cerebral Cortex , 1997, The Journal of Neuroscience.

[121]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[122]  Christopher A. Buneo,et al.  Direct visuomotor transformations for reaching , 2002, Nature.

[123]  Filippo Brighina,et al.  Contralateral neglect induced by right posterior parietal rTMS in healthy subjects , 2000, Neuroreport.

[124]  Chi-Hung Juan,et al.  Human frontal eye fields and visual search. , 2003, Journal of neurophysiology.

[125]  A. Treisman,et al.  Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions , 1995, Science.

[126]  M. Rushworth,et al.  The parietal cortex in visual search: a visuomotor hypothesis. , 2003, Supplements to Clinical neurophysiology.

[127]  D. Wolpert,et al.  Maintaining internal representations: the role of the human superior parietal lobe , 1998, Nature Neuroscience.

[128]  R. E. Passingham,et al.  Parietal cortex and movement I. Movement selection and reaching , 1997, Experimental Brain Research.

[129]  R. E. Passingham,et al.  Parietal cortex and movement II. Spatial representation , 1997, Experimental Brain Research.

[130]  John C. Rothwell,et al.  Transcranial Magnetic Stimulation Can Be Used to Test Connections to Primary Motor Areas from Frontal and Medial Cortex in Humans , 2001, NeuroImage.

[131]  P. van Donkelaar,et al.  Transcranial magnetic stimulation disrupts eye-hand interactions in the posterior parietal cortex. , 2000, Journal of neurophysiology.

[132]  A. Cowey,et al.  The role of the parietal cortex in visual attention—hemispheric asymmetries and the effects of learning: a magnetic stimulation study , 1998, Neuropsychologia.

[133]  H. R. Siebner,et al.  Parietal Magnetic Stimulation Delays Visuomotor Mental Rotation at Increased Processing Demands , 2002, NeuroImage.

[134]  Jeffrey D. Schall,et al.  Neural basis of deciding, choosing and acting , 2001, Nature Reviews Neuroscience.

[135]  M. Rushworth,et al.  A primer of magnetic stimulation as a tool for neuropsychology. , 1999, Neuropsychologia.

[136]  Karl J. Friston,et al.  Acute Remapping within the Motor System Induced by Low-Frequency Repetitive Transcranial Magnetic Stimulation , 2003, The Journal of Neuroscience.

[137]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[138]  P M Rossini,et al.  Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage. , 1999, Brain : a journal of neurology.

[139]  Á. Pascual-Leone,et al.  Linking Out-of-Body Experience and Self Processing to Mental Own-Body Imagery at the Temporoparietal Junction , 2005, The Journal of Neuroscience.

[140]  Patrick Haggard,et al.  Motor awareness without perceptual awareness , 2005, Neuropsychologia.

[141]  Alvaro Pascual-Leone,et al.  Transcranial magnetic stimulation: a neurochromometrics of mind. , 2003 .

[142]  Matthew F. S. Rushworth,et al.  Parietal rTMS Disrupts the Initiation but not the Execution of On-line Adjustments to a Perturbation of Object Size , 2005, Journal of Cognitive Neuroscience.

[143]  C. D. Frith,et al.  Brain Activations during Visual Search: Contributions of Search Efficiency versus Feature Binding , 2003, NeuroImage.

[144]  Ferdinand Binkofski,et al.  Modular organization of parietal lobe functions as revealed by functional activation studies. , 2003, Advances in neurology.

[145]  A. Canavan,et al.  Frontal and parietal transcranial magnetic stimulation (TMS) disturbs programming of saccadic eye movements , 1995, Journal of the Neurological Sciences.

[146]  J. Rothwell,et al.  Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex , 2004, The Journal of physiology.

[147]  Jason B. Mattingley,et al.  Modality-Specific Control of Strategic Spatial Attention in Parietal Cortex , 2004, Neuron.

[148]  C Caltagirone,et al.  Overestimation of numerical distances in the left side of space , 2004, Neurology.

[149]  Alan Cowey,et al.  Spatial neglect in near and far space investigated by repetitive transcranial magnetic stimulation. , 2002, Brain : a journal of neurology.

[150]  R. Passingham,et al.  The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human Brain , 2001, Journal of Cognitive Neuroscience.

[151]  Shaul Hochstein,et al.  The spread of attention and learning in feature search: effects of target distribution and task difficulty , 2000, Vision Research.

[152]  Satoru Miyauchi,et al.  Localizing the site of magnetic brain stimulation by functional MRI , 1998, Experimental Brain Research.

[153]  Scott T. Grafton,et al.  Role of the posterior parietal cortex in updating reaching movements to a visual target , 1999, Nature Neuroscience.

[154]  C. Büchel,et al.  Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. , 2001, Journal of neurophysiology.

[155]  M. Goodale,et al.  The visual brain in action , 1995 .

[156]  A T Barker,et al.  The history and basic principles of magnetic nerve stimulation. , 1999, Electroencephalography and clinical neurophysiology. Supplement.