Energy Levels of 50Ca Nucleus as a Function of the Classical Coupling Angle within MSDI

In the construction of this kind of shell model, we take the residual interaction to be modified surface delta interaction MSDI. We have studied the excitation energies of the 50Ca a nucleus, which contain two neutrons outside closed shell of the 48Ca. Neutrons are in the model space pfpg. The energy levels and angular momentum of all possible cases were investigated. Thereby, we have effectively utilized a theoretical process to find link among the traditional coupling angle and energy levels at different orbital within neutron - neutron interaction. We observe the energy stages appear to follow two overall functions which depend on the classical coupling angles but are unconstrained of angular momentum I. We find out that our results agree with the experimental data.

[1]  A. K. Hasan,et al.  The relationship between the energy levels and semi-classical coupling angle θ1, 2 for 48Sc, 54Co nuclei using Pandya transformation , 2020, Indian Journal of Physics.

[2]  B. Hu,et al.  Neutron-rich calcium isotopes within realistic Gamow shell model calculations with continuum coupling , 2020, 2008.11948.

[3]  A. K. Hasan,et al.  Energy levels of nuclei 40Sc and 40K as a function of semi-classical coupling angle θ1,2 within the modified surface delta-interaction , 2019, Nuclear Physics and Atomic Energy.

[4]  F. A. Majeed,et al.  Nuclear structure study of [22,24]Ne and [24]Mg nuclei , 2019, Revista Mexicana de Física.

[5]  Balraj Singh,et al.  Nuclear Data Sheets for A=50 , 2019, Nuclear Data Sheets.

[6]  Ehsan M. Raheem,et al.  The effects of core polarisation on some even–even sd-shell nuclei using Michigan three-range Yukawa and modified surface delta interactions , 2019, Pramana.

[7]  A. K. Hasan,et al.  Energy Levels of Isobaric Nuclei (16N, 16F) within the Modified Surface Delta-Interaction Model , 2018, Ukrainian Journal of Physics.

[8]  R. Block,et al.  Falsification Experiments for Spacetime Theories from the Neurological Sciences , 2018 .

[9]  P. Isacker A geometry for the shell model , 2018, 1802.07025.

[10]  J. Piekarewicz Emergence of low-energy monopole strength in the neutron-rich calcium isotopes , 2017, 1707.07185.

[11]  N. Giai,et al.  Influence of complex configurations on the properties of the pygmy dipole resonance in neutron-rich Ca isotopes , 2017, 1703.07628.

[12]  J. Kostensalo,et al.  Spin-multipole nuclear matrix elements in the pn quasiparticle random-phase approximation: Implications for β and ββ half-lives , 2017 .

[13]  W. Nazarewicz,et al.  Unexpectedly large charge radii of neutron-rich calcium isotopes , 2016, Nature Physics.

[14]  R. Hertenberger,et al.  Complete identification of states in Pb-208 below E-x=6.2 MeV , 2016 .

[15]  P. V. Isackera Geometry of shell-model matrix elements , 2014 .

[16]  A. Subber,et al.  Level structure of ^{210}Po by means of surface delta interaction , 2013 .

[17]  A. Macchiavelli,et al.  Geometry of the shears mechanism in nuclei , 2013, 1306.1132.

[18]  B. A. Brown,et al.  Structure of 55Ti from relativistic one-neutron knockout , 2008, 0810.3157.

[19]  W. Mittig,et al.  Shell evolution and the N = 34 “magic number” , 2007 .

[20]  Joakim Cederkäll,et al.  Beta-Decay Studies of Neutron-Rich K Isotopes , 2006 .

[21]  L. Coraggio,et al.  Proton-neutron multiplets in exotic 134Sb : Testing the shell-model effective interaction , 2006, nucl-th/0603074.

[22]  L. Coraggio,et al.  Low-momentum nucleon-nucleon interactions and shell-model calculations , 2005, nucl-th/0701065.

[23]  Paul F. Mantica,et al.  Reduced transition probabilities to the first 2+ state in 52,54,56Ti and development of shell-closures at N = 32, 34 , 2005 .

[24]  F. Nowacki,et al.  The shell model as a unified view of nuclear structure , 2004, nucl-th/0402046.

[25]  B. A. Brown,et al.  Development of shell closures at N=32,34. I. β decay of neutron-rich Sc isotopes , 2004 .

[26]  R. Alzetta The nuclear shell model. , 2004, Rivista di biologia.

[27]  H. Fortune,et al.  2 p 3 / 2 strength in 4 0 , 4 1 Sc and the 39 Ca ( p , γ ) reaction rate , 2002 .

[28]  F. Nowacki,et al.  Shell model study of the isobaric chains A=50, A=51 and A=52 , 2000, nucl-th/0012077.

[29]  D. Bromley Theory of the Nuclear Shell Model , 1982 .

[30]  A. Klein,et al.  Shell‐Model Applications in Nuclear Spectroscopy , 1978 .

[31]  M. L. Halbert,et al.  Nuclear data sheets for A = 49* , 1978 .

[32]  H. Bethe,et al.  Effective two-body interaction in simple nuclear spectra , 1975 .

[33]  J. Schiffer The spectra of near-magic odd-odd nuclei and the effective interaction , 1971 .

[34]  P. Glaudemans,et al.  TWO-BODY MATRIX ELEMENTS FROM A MODIFIED SURFACE DELTA INTERACTION. , 1967 .

[35]  A. Plastino,et al.  The surface delta interaction in the transuranic nuclei , 1967 .