Energy Levels of 50Ca Nucleus as a Function of the Classical Coupling Angle within MSDI
暂无分享,去创建一个
[1] A. K. Hasan,et al. The relationship between the energy levels and semi-classical coupling angle θ1, 2 for 48Sc, 54Co nuclei using Pandya transformation , 2020, Indian Journal of Physics.
[2] B. Hu,et al. Neutron-rich calcium isotopes within realistic Gamow shell model calculations with continuum coupling , 2020, 2008.11948.
[3] A. K. Hasan,et al. Energy levels of nuclei 40Sc and 40K as a function of semi-classical coupling angle θ1,2 within the modified surface delta-interaction , 2019, Nuclear Physics and Atomic Energy.
[4] F. A. Majeed,et al. Nuclear structure study of [22,24]Ne and [24]Mg nuclei , 2019, Revista Mexicana de Física.
[5] Balraj Singh,et al. Nuclear Data Sheets for A=50 , 2019, Nuclear Data Sheets.
[6] Ehsan M. Raheem,et al. The effects of core polarisation on some even–even sd-shell nuclei using Michigan three-range Yukawa and modified surface delta interactions , 2019, Pramana.
[7] A. K. Hasan,et al. Energy Levels of Isobaric Nuclei (16N, 16F) within the Modified Surface Delta-Interaction Model , 2018, Ukrainian Journal of Physics.
[8] R. Block,et al. Falsification Experiments for Spacetime Theories from the Neurological Sciences , 2018 .
[9] P. Isacker. A geometry for the shell model , 2018, 1802.07025.
[10] J. Piekarewicz. Emergence of low-energy monopole strength in the neutron-rich calcium isotopes , 2017, 1707.07185.
[11] N. Giai,et al. Influence of complex configurations on the properties of the pygmy dipole resonance in neutron-rich Ca isotopes , 2017, 1703.07628.
[12] J. Kostensalo,et al. Spin-multipole nuclear matrix elements in the pn quasiparticle random-phase approximation: Implications for β and ββ half-lives , 2017 .
[13] W. Nazarewicz,et al. Unexpectedly large charge radii of neutron-rich calcium isotopes , 2016, Nature Physics.
[14] R. Hertenberger,et al. Complete identification of states in Pb-208 below E-x=6.2 MeV , 2016 .
[15] P. V. Isackera. Geometry of shell-model matrix elements , 2014 .
[16] A. Subber,et al. Level structure of ^{210}Po by means of surface delta interaction , 2013 .
[17] A. Macchiavelli,et al. Geometry of the shears mechanism in nuclei , 2013, 1306.1132.
[18] B. A. Brown,et al. Structure of 55Ti from relativistic one-neutron knockout , 2008, 0810.3157.
[19] W. Mittig,et al. Shell evolution and the N = 34 “magic number” , 2007 .
[20] Joakim Cederkäll,et al. Beta-Decay Studies of Neutron-Rich K Isotopes , 2006 .
[21] L. Coraggio,et al. Proton-neutron multiplets in exotic 134Sb : Testing the shell-model effective interaction , 2006, nucl-th/0603074.
[22] L. Coraggio,et al. Low-momentum nucleon-nucleon interactions and shell-model calculations , 2005, nucl-th/0701065.
[23] Paul F. Mantica,et al. Reduced transition probabilities to the first 2+ state in 52,54,56Ti and development of shell-closures at N = 32, 34 , 2005 .
[24] F. Nowacki,et al. The shell model as a unified view of nuclear structure , 2004, nucl-th/0402046.
[25] B. A. Brown,et al. Development of shell closures at N=32,34. I. β decay of neutron-rich Sc isotopes , 2004 .
[26] R. Alzetta. The nuclear shell model. , 2004, Rivista di biologia.
[27] H. Fortune,et al. 2 p 3 / 2 strength in 4 0 , 4 1 Sc and the 39 Ca ( p , γ ) reaction rate , 2002 .
[28] F. Nowacki,et al. Shell model study of the isobaric chains A=50, A=51 and A=52 , 2000, nucl-th/0012077.
[29] D. Bromley. Theory of the Nuclear Shell Model , 1982 .
[30] A. Klein,et al. Shell‐Model Applications in Nuclear Spectroscopy , 1978 .
[31] M. L. Halbert,et al. Nuclear data sheets for A = 49* , 1978 .
[32] H. Bethe,et al. Effective two-body interaction in simple nuclear spectra , 1975 .
[33] J. Schiffer. The spectra of near-magic odd-odd nuclei and the effective interaction , 1971 .
[34] P. Glaudemans,et al. TWO-BODY MATRIX ELEMENTS FROM A MODIFIED SURFACE DELTA INTERACTION. , 1967 .
[35] A. Plastino,et al. The surface delta interaction in the transuranic nuclei , 1967 .