Investigating the genetic architecture of eye colour in a Canadian cohort

[1]  Michael A. Kovacs,et al.  A large Canadian cohort provides insights into the genetic architecture of human hair colour , 2021, Communications Biology.

[2]  Michael A. Kovacs,et al.  Cell-type-specific meQTLs extend melanoma GWAS annotation beyond eQTLs and inform melanocyte gene-regulatory mechanisms. , 2021, American journal of human genetics.

[3]  M. P. Concas,et al.  Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color , 2021, Science Advances.

[4]  D. Larremore,et al.  Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening , 2020, Science Advances.

[5]  G. Luyten,et al.  Iris Colour and the Risk of Developing Uveal Melanoma , 2020, International journal of molecular sciences.

[6]  K. Kidd,et al.  The distinctive geographic patterns of common pigmentation variants at the OCA2 gene , 2020, Scientific Reports.

[7]  N. Morling,et al.  Association between brown eye colour in rs12913832:GG individuals and SNPs in TYR, TYRP1, and SLC24A4 , 2020, PloS one.

[8]  C. Bonilla,et al.  Investigating DNA methylation as a potential mediator between pigmentation genes, pigmentary traits and skin cancer , 2020, bioRxiv.

[9]  M. Nöthen,et al.  Genome-wide study on uveal melanoma patients finds association to DNA repair gene TDP1 , 2020, Melanoma research.

[10]  Blair H. Smith,et al.  Genome-wide association meta-analyses combining multiple risk phenotypes provides insights into the genetic architecture of cutaneous melanoma susceptibility , 2020, Nature Genetics.

[11]  B. Gabrielli,et al.  Unexpected High Levels of BRN2/POU3F2 Expression in Human Dermal Melanocytic Nevi. , 2019, The Journal of investigative dermatology.

[12]  Michael A. Kovacs,et al.  Meta-analysis of GWA studies provides new insights on the genetic architecture of skin pigmentation in recently admixed populations , 2019, BMC Genetics.

[13]  Stephen Burgess,et al.  A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits , 2019, Nature Communications.

[14]  P. Sachs,et al.  SMARCAD1 ATPase activity is required to silence endogenous retroviruses in embryonic stem cells , 2019, Nature Communications.

[15]  Michael Nothnagel,et al.  True colors: A literature review on the spatial distribution of eye and hair pigmentation. , 2019, Forensic science international. Genetics.

[16]  D. Balding,et al.  A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia , 2019, Nature Communications.

[17]  K. Wakamatsu,et al.  Mammalian pigmentation is regulated by a distinct cAMP-dependent mechanism that controls melanosome pH , 2018, Science Signaling.

[18]  D. Torrents,et al.  Multitrait genome association analysis identifies new susceptibility genes for human anthropometric variation in the GCAT cohort , 2018, Journal of Medical Genetics.

[19]  Titia Sijen,et al.  The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. , 2018, Forensic science international. Genetics.

[20]  Jun Wang,et al.  SNPnexus: assessing the functional relevance of genetic variation to facilitate the promise of precision medicine , 2018, Nucleic Acids Res..

[21]  H. Soyer,et al.  Iris pigmented lesions as a marker of cutaneous melanoma risk: an Australian case–control study , 2018, The British journal of dermatology.

[22]  Jianxin Shi,et al.  Cell-type–specific eQTL of primary melanocytes facilitates identification of melanoma susceptibility genes , 2017, bioRxiv.

[23]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[24]  M. Pirinen,et al.  Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies. , 2017, American journal of human genetics.

[25]  A. Wollstein,et al.  Erratum to: Global skin colour prediction from DNA , 2017, Human Genetics.

[26]  Peter M Visscher,et al.  Inference on the Genetic Basis of Eye and Skin Color in an Admixed Population via Bayesian Linear Mixed Models , 2017, Genetics.

[27]  D. Cox,et al.  A GWAS in uveal melanoma identifies risk polymorphisms in the CLPTM1L locus , 2017, npj Genomic Medicine.

[28]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[29]  G. Willemsen,et al.  The Genetic Overlap Between Hair and Eye Color , 2016, Twin Research and Human Genetics.

[30]  E. Parra,et al.  Quantitative assessment of skin, hair, and iris variation in a diverse sample of individuals and associated genetic variation. , 2016, American journal of physical anthropology.

[31]  Shane A. McCarthy,et al.  Reference-based phasing using the Haplotype Reference Consortium panel , 2016, Nature Genetics.

[32]  N. Morling,et al.  Importance of nonsynonymous OCA2 variants in human eye color prediction , 2016, Molecular genetics & genomic medicine.

[33]  E. Parra,et al.  Iris pigmentation as a quantitative trait: variation in populations of European, East Asian and South Asian ancestry and association with candidate gene polymorphisms , 2016, Pigment cell & melanoma research.

[34]  Manolis Kellis,et al.  HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease , 2015, Nucleic Acids Res..

[35]  Mitchell J. Machiela,et al.  LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants , 2015, Bioinform..

[36]  Matti Pirinen,et al.  FINEMAP: efficient variable selection using summary data from genome-wide association studies , 2015, bioRxiv.

[37]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[38]  Nicholas G. Martin,et al.  Genetics of skin color variation in Europeans: genome-wide association studies with functional follow-up , 2015, Human Genetics.

[39]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[40]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[41]  M. Marks,et al.  An intracellular anion channel critical for pigmentation , 2014, eLife.

[42]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[43]  M. Kayser,et al.  The common occurrence of epistasis in the determination of human pigmentation and its impact on DNA-based pigmentation phenotype prediction. , 2014, Forensic science international. Genetics.

[44]  Stephen D. Turner,et al.  qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots , 2014, bioRxiv.

[45]  F. Grosveld,et al.  Genetic variation in regulatory DNA elements: the case of OCA2 transcriptional regulation , 2014, Pigment cell & melanoma research.

[46]  Titia Sijen,et al.  Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. , 2014, Forensic science international. Genetics.

[47]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[48]  P. Visscher,et al.  Advantages and pitfalls in the application of mixed-model association methods , 2014, Nature Genetics.

[49]  Richard Durbin,et al.  Efficient haplotype matching and storage using the positional Burrows–Wheeler transform (PBWT) , 2014, Bioinform..

[50]  Theresa Guo,et al.  A Polymorphism in IRF4 Affects Human Pigmentation through a Tyrosinase-Dependent MITF/TFAP2A Pathway , 2013, Cell.

[51]  Jeffrey E. Lee,et al.  Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. , 2013, Human molecular genetics.

[52]  Nicholas A. Johnson,et al.  Genetic Architecture of Skin and Eye Color in an African-European Admixed Population , 2013, PLoS genetics.

[53]  A. Hofman,et al.  Comprehensive candidate gene study highlights UGT1A and BNC2 as new genes determining continuous skin color variation in Europeans , 2013, Human Genetics.

[54]  D. Absher,et al.  Genome-Wide Association Studies of Quantitatively Measured Skin, Hair, and Eye Pigmentation in Four European Populations , 2012, PloS one.

[55]  Jochen K. Lennerz,et al.  A UV-independent pathway to melanoma carcinogenesis in the redhair-fairskin background , 2012, Nature.

[56]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[57]  M. Marazita,et al.  Genome-wide Association Studies , 2012, Journal of dental research.

[58]  Usha Chakravarthy,et al.  DNA-based eye colour prediction across Europe with the IrisPlex system. , 2012, Forensic science international. Genetics.

[59]  Nicholas R. Lemoine,et al.  SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012 update) , 2012, Nucleic Acids Res..

[60]  Eleazar Eskin,et al.  Interpreting Meta-Analyses of Genome-Wide Association Studies , 2012, PLoS genetics.

[61]  Robert-Jan Palstra,et al.  HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. , 2012, Genome research.

[62]  Sanket U. Shah,et al.  Iris melanoma: features and prognosis in 317 children and adults. , 2012, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[63]  K. Kidd,et al.  A global view of the OCA2-HERC2 region and pigmentation , 2011, Human Genetics.

[64]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[65]  L. Steinmetz,et al.  Genome-wide H4 K16 acetylation by SAS-I is deposited independently of transcription and histone exchange , 2011, Nucleic acids research.

[66]  A. McRae,et al.  GWAS findings for human iris patterns: associations with variants in genes that influence normal neuronal pattern development. , 2011, American journal of human genetics.

[67]  Eleazar Eskin,et al.  Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. , 2011, American journal of human genetics.

[68]  D. Labuda,et al.  Admixed ancestry and stratification of Quebec regional populations. , 2011, American journal of physical anthropology.

[69]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[70]  D. Dembélé,et al.  Genome‐wide analysis of POU3F2/BRN2 promoter occupancy in human melanoma cells reveals Kitl as a novel regulated target gene , 2010, Pigment cell & melanoma research.

[71]  Brian T. Naughton,et al.  Web-Based, Participant-Driven Studies Yield Novel Genetic Associations for Common Traits , 2010, PLoS genetics.

[72]  Nicholas G. Martin,et al.  Digital Quantification of Human Eye Color Highlights Genetic Association of Three New Loci , 2010, PLoS genetics.

[73]  R. Paro,et al.  Distinct Roles of Hand2 in Initiating Polarity and Posterior Shh Expression during the Onset of Mouse Limb Bud Development , 2010, PLoS genetics.

[74]  Robert-Jan Palstra Close encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation. , 2009, Briefings in functional genomics & proteomics.

[75]  Snæbjörn Pálsson,et al.  Two newly identified genetic determinants of pigmentation in Europeans , 2008, Nature Genetics.

[76]  Johan T den Dunnen,et al.  Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene. , 2008, American journal of human genetics.

[77]  Snæbjörn Pálsson,et al.  Genetic determinants of hair, eye and skin pigmentation in Europeans , 2007, Nature Genetics.

[78]  D. Cox,et al.  A genomewide association study of skin pigmentation in a South Asian population. , 2007, American journal of human genetics.

[79]  K. Wakamatsu,et al.  Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides , 2007, Pigment cell & melanoma research.

[80]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[81]  D. Fisher,et al.  Melanocyte biology and skin pigmentation , 2007, Nature.

[82]  D. Hu,et al.  Uveal Melanocytes Do Not Respond To or Express Receptors for α-Melanocyte-Stimulating Hormone , 2006 .

[83]  S. Orlow,et al.  Heterologous expression of tyrosinase recapitulates the misprocessing and mistrafficking in oculocutaneous albinism type 2: effects of altering intracellular pH and pink-eyed dilution gene expression. , 2006, Experimental eye research.

[84]  Keith C. Cheng,et al.  SLC24A5, a Putative Cation Exchanger, Affects Pigmentation in Zebrafish and Humans , 2005, Science.

[85]  R. Sturm,et al.  Eye colour: portals into pigmentation genes and ancestry. , 2004, Trends in genetics : TIG.

[86]  J. Rees Genetics of hair and skin color. , 2003, Annual review of genetics.

[87]  N. Pedersen,et al.  Importance of genetic effects for characteristics of the human iris. , 2003, Twin research : the official journal of the International Society for Twin Studies.

[88]  S. Orlow,et al.  Pink-eyed dilution protein controls the processing of tyrosinase. , 2002, Molecular biology of the cell.

[89]  M. Brilliant,et al.  Aberrant pH of melanosomes in pink-eyed dilution (p) mutant melanocytes. , 2000, The Journal of investigative dermatology.

[90]  K. Cruickshanks,et al.  Eye color changes past early childhood. The Louisville Twin Study. , 1997, Archives of ophthalmology.

[91]  I. McLean,et al.  Uveal melanoma , 1997, Cancer.

[92]  C. Davenport,et al.  Heredity of eye-color in man , 1907, Zeitschrift für induktive Abstammungs- und Vererbungslehre.

[93]  Michael R. Masinter A Common Occurrence , 2016 .

[94]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[95]  Jochen K. Lennerz,et al.  An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair / fair skin background , 2012 .

[96]  Tanya M. Teslovich,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[97]  E. Parra,et al.  Human pigmentation variation: evolution, genetic basis, and implications for public health. , 2007, American journal of physical anthropology.

[98]  D. Hu,et al.  Uveal melanocytes do not respond to or express receptors for alpha-melanocyte-stimulating hormone. , 2006, Investigative ophthalmology & visual science.

[99]  D. Weatherall Genetic overlap , 1994, Nature.