Atomic structure variations of mechanically stable fcc-bcc interfaces

It has recently been shown that under severe plastic deformation processing bi-metal fcc/bcc composites develop a mechanically stable heterophase interface that joins the {112}fcc//{112}bcc planes in the Kurdjumov-Sachs orientation relationship. In this article, we study variations in the relaxed equilibrium atomic structure of this interface with changes in fcc stacking fault energy (SFE) and lattice mismatch between the two crystals. Using molecular statics/dynamics simulations for three fcc/bcc systems, Cu-Nb, Al-Fe, and Al-Nb, we find that the number of distinct sets of intrinsic interfacial dislocations and their core structures vary significantly among these three systems. The impact of these atomic-scale structural differences on interfacial properties is demonstrated through their interactions with point defects. The interfaces studied here are shown to exhibit a wide variation in ability, ranging from being a poor to an excellent sink for vacancies.

[1]  A. H. King,et al.  Diffusion induced grain boundary migration , 1987 .

[2]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[3]  R. Bonnet,et al.  Réseaux denses de défauts linéaires interfaciaux et dislocations de Somigliana , 2005 .

[4]  R. Bonnet Elasticity theory of a thin bicrystal distorted by an interfacial dislocation array parallel to the free surfaces , 1985 .

[5]  T. Ogurtani SOLITONS IN SOLIDS , 1983 .

[6]  T. Germann,et al.  Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces , 2011 .

[7]  M. Véron,et al.  High-strength materials: in-situ investigations of dislocation behaviour in Cu-Nb multifilamentary nanostructured composites , 2002 .

[8]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[9]  M. Demkowicz,et al.  Interfaces Between Dissimilar Crystalline Solids , 2008 .

[10]  M. Véron,et al.  Deformation mechanism in high strength Cu/Nb nanocomposites , 2001 .

[11]  J. Hirth,et al.  Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces , 2008 .

[12]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[13]  Amit Misra,et al.  Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites , 1998 .

[14]  A. Misra,et al.  An overview of interface-dominated deformation mechanisms in metallic multilayers , 2011 .

[15]  H. Zbib,et al.  The Somigliana ring dislocation , 1992 .

[16]  J. Hirth,et al.  Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers , 2004 .

[17]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[18]  R. Hoagland,et al.  The influence of interface shear strength on the glide dislocation–interface interactions , 2011 .

[19]  P. Bak Solitons in Incommensurate Systems , 1978 .

[20]  T. Mura,et al.  Moving circular twist disclination loop in homogeneous and two-phase materials☆ , 1973 .

[21]  I. Beyerlein,et al.  Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites , 2012 .

[22]  M. Nastasi,et al.  Structure and Mechanical Properties of Copper/Niobium Multilayers , 2005 .

[23]  A. Misra,et al.  Structural metals at extremes , 2010 .

[24]  J. Hirth,et al.  Steps, dislocations and disconnections as interface defects relating to structure and phase transformations , 1996 .

[25]  J. Hirth,et al.  Defects at Surfaces and Interfaces , 1994 .

[26]  Arthur F. Voter,et al.  Accurate Interatomic Potentials for Ni, Al and Ni3Al , 1986 .

[27]  A. Rollett,et al.  The heterophase interface character distribution of physical vapor-deposited and accumulative roll-bonded Cu–Nb multilayer composites , 2012 .

[28]  T. Mura,et al.  Elastic Fields and Energies of a Circular Edge Disclination and a Straight Screw Disclination , 1970 .

[29]  M. Demkowicz,et al.  Structure, shear resistance and interaction with point defects of interfaces in Cu–Nb nanocomposites synthesized by severe plastic deformation , 2011 .

[30]  R. A. Johnson,et al.  Analytic embedded atom method model for bcc metals , 1989 .

[31]  M. Demkowicz,et al.  The radiation damage tolerance of ultra-high strength nanolayered composites , 2007 .

[32]  M. Demkowicz,et al.  Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. , 2008, Physical review letters.

[33]  Blas P. Uberuaga,et al.  Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission , 2010, Science.

[34]  Amit Misra,et al.  In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites , 2010 .

[35]  Matthew J. Kramer,et al.  Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu , 2008 .

[36]  P. Kelly,et al.  Magnetron sputtering: a review of recent developments and applications , 2000 .

[37]  Richard G. Hoagland,et al.  On the strengthening effects of interfaces in multilayer fee metallic composites , 2002 .

[38]  M. Demkowicz,et al.  Structure of Kurdjumov-Sachs interfaces in simulations of a copper-niobium bilayer , 2008 .

[39]  J. Hirth,et al.  On the role of weak interfaces in blocking slip in nanoscale layered composites , 2006 .

[40]  X. Sauvage,et al.  Solid state amorphization in cold drawn Cu/Nb wires , 2001 .

[41]  Seungwu Han,et al.  Effect of Fe segregation on the migration of a non-symmetric ∑5 tilt grain boundary in Al , 2005 .

[42]  R. Hoagland,et al.  Room-temperature dislocation climb in metallic interfaces , 2009 .

[43]  M. Demkowicz,et al.  Simulations of Collision Cascades in Cu–Nb Layered Composites Using an EAM Interatomic Potential , 2009 .

[44]  P. C. Clapp,et al.  Dislocation Generation and Crack Propagation in Metals Examined in Molecular Dynamics Simulations , 1992 .

[45]  M. Casanove,et al.  Microstructural characterization of high strength and high conductivity nanocomposite wires , 1996 .