Validation of the low-velocity impact damage prediction through analytical scaling

Abstract The analytical scaling method for low-velocity impact permits an efficient application of impact analysis through high-fidelity numerical simulation. Structural impact scenarios can be analyzed on a small damage-prone section, called reference coupon. An analytical spring-mass model transfers the damage result from the reference coupon to the structural level. In this article, we investigate the validity of that scaling method. A large set of experimental impact scenarios forms the basis to identify the capabilities of scaled impact analysis. In a further critical assessment, we identify the corresponding limitations. These mainly concern the geometry of the impact configurations – the damage can shift its mode when the impact occurs close to supported edges or stiffening elements. Besides, the experimental results indicate an increased uncertainty from the reference impact to the total all scaled impact scenarios. Furthermore, the impact analysis through quasistatic scaling entails a systematic bias. Smaller damage than expected occurs in several cases. The excitation of higher-order vibration modes explains this observed bias. An initial value problem of the impact configuration allows conducting a modal energy correction. This energy correction explains the systematically too small size of scaled impact damage.

[1]  K. K. Singh,et al.  Impact damage on fibre-reinforced polymer matrix composite – A review , 2014 .

[2]  Takehito Fukuda,et al.  Improvement of Damping Property of CFRP Composite Beam Interleaved with Shape Memory Polymer Using CFRP Laminate as a Heater , 1997 .

[3]  John Morton,et al.  Scaling of impact-loaded carbon-fiber composites , 1988 .

[4]  Tobias Wille,et al.  Review and benchmark study on the analysis of low-velocity impact on composite laminates , 2018 .

[5]  O. Allix,et al.  Interlaminar interface modelling for the prediction of delamination , 1992 .

[6]  W. Cantwell,et al.  Comparison of the low and high velocity impact response of cfrp , 1989 .

[7]  Pedro P. Camanho,et al.  Simulation of drop-weight impact and compression after impact tests on composite laminates , 2012 .

[8]  Zafer Gürdal,et al.  Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations , 2009 .

[9]  Christophe Bouvet,et al.  Low velocity impact modeling in composite laminates capturing permanent indentation , 2012 .

[10]  Ahmet S. Yigit,et al.  EFFECT OF FLEXIBILITY ON LOW VELOCITY IMPACT RESPONSE , 1998 .

[11]  Raffael Marius Bogenfeld,et al.  A tensorial based progressive damage model for fiber reinforced polymers , 2017 .

[12]  J. Llorca,et al.  Physically-sound simulation of low-velocity impact on fiber reinforced laminates , 2016 .

[13]  Aniello Riccio,et al.  Numerical Investigation of a Stiffened Panel Subjected to Low Velocity Impacts , 2015 .

[14]  Brian Falzon,et al.  Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates , 2015 .

[15]  Ahmet S. Yigit,et al.  SCALING OF LOW-VELOCITY IMPACT RESPONSE IN COMPOSITE STRUCTURES , 2009 .

[16]  Lorenzo Iannucci,et al.  A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage , 2012 .

[17]  Christophe Bouvet,et al.  Discrete Impact Modeling of Inter- and Intra-laminar Failure in Composites , 2013 .

[18]  Stephen R. Swanson,et al.  Limits of quasi-static solutions in impact of composite structures , 1992 .

[19]  Philippe Viot,et al.  Low velocity impact response and damage of laminate composite glass fibre/epoxy based tri-block copolymer , 2015 .

[20]  Sauvik Banerjee,et al.  Structural Health Monitoring of Advanced Composites Using Guided Waves , 2017 .

[21]  Bruno Castanié,et al.  Dynamic failure of composite and sandwich structures , 2013 .

[22]  Serge Abrate,et al.  Impact on Composite Structures , 1998 .

[23]  Raimund Rolfes,et al.  Improved transverse shear stresses in composite finite elements based on first order shear deformation theory , 1997 .

[24]  Sauvik Banerjee,et al.  Identification of disbond and high density core region in a honeycomb composite sandwich structure using ultrasonic guided waves , 2016 .

[25]  Golam Newaz,et al.  Damage Tolerance in Advanced Composites , 1995 .

[26]  Jean-Louis Chaboche,et al.  Continuous damage mechanics — A tool to describe phenomena before crack initiation☆ , 1981 .

[27]  Piyas Chowdhury,et al.  Damage tolerance of carbon-carbon composites in aerospace application , 2018 .

[28]  Heinz E. Pettermann,et al.  Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements , 2016 .

[29]  Vladimir P. Vavilov Modeling and characterizing impact damage in carbon fiber composites by thermal/infrared non-destructive testing , 2014 .

[30]  Heinz E. Pettermann,et al.  Modelling and simulation of damage and failure in large composite components subjected to impact loads , 2016 .

[31]  Adrien-Marie Legendre,et al.  Nouvelles méthodes pour la détermination des orbites des comètes , 1970 .

[32]  K. Rohwer,et al.  Application of higher order theories to the bending analysis of layered composite plates , 1992 .

[33]  Tobias Wille,et al.  An analytical scaling approach for low-velocity impact on composite structures , 2018 .

[34]  Abdallah A. Elsharkawy,et al.  An inverse solution for low-velocity impact in composite plates , 2001 .

[35]  Stephen R. Swanson,et al.  Scaling of impact damage in fiber composites from laboratory specimens to structures , 1993 .

[36]  Wieslaw Ostachowicz,et al.  Online detection of barely visible low-speed impact damage in 3D-core sandwich composite structure , 2018 .

[37]  S. R. Swanson,et al.  Interpretation of Scaling of Damage and Failure in Fiber Composite Laminates , 1994 .

[38]  Raimund Rolfes,et al.  Higher-order theories for thermal stresses in layered plates , 2001 .