Semi-greedy heuristics for feature selection with test cost constraints

[1]  Davide Ciucci,et al.  Rough Sets , 1995, Lecture Notes in Computer Science.

[2]  Hong Zhao,et al.  Test-cost-sensitive attribute reduction on heterogeneous data for adaptive neighborhood model , 2016, Soft Comput..

[3]  Hong Zhao,et al.  An exponent weighted algorithm for minimal cost feature selection , 2016, Int. J. Mach. Learn. Cybern..

[4]  Hong Zhao,et al.  Fast randomized algorithm with restart strategy for minimal test cost feature selection , 2015, Int. J. Mach. Learn. Cybern..

[5]  FanMin,et al.  Parametric Rough Sets with Application to Granular Association Rule Mining , 2015 .

[6]  William Zhu,et al.  An improved artificial bee colony algorithm for minimal time cost reduction , 2014, Int. J. Mach. Learn. Cybern..

[7]  Xiaodong Yue,et al.  Parallel attribute reduction algorithms using MapReduce , 2014, Inf. Sci..

[8]  Hong Zhao,et al.  Optimal cost-sensitive granularization based on rough sets for variable costs , 2014, Knowl. Based Syst..

[9]  Qinghua Hu,et al.  Comparative analysis on margin based feature selection algorithms , 2014, Int. J. Mach. Learn. Cybern..

[10]  Dominik Slezak,et al.  Rough Set Methods for Attribute Clustering and Selection , 2014, Appl. Artif. Intell..

[11]  Qinghua Hu,et al.  Feature selection with test cost constraint , 2012, ArXiv.

[12]  Hong Zhao,et al.  Feature Selection with Positive Region Constraint for Test-Cost-Sensitive Data , 2014, Trans. Rough Sets.

[13]  Jing-Yu Yang,et al.  Test cost sensitive multigranulation rough set: Model and minimal cost selection , 2013, Inf. Sci..

[14]  Wei-Zhi Wu,et al.  On knowledge acquisition in multi-scale decision systems , 2013, Int. J. Mach. Learn. Cybern..

[15]  Jonathan J. H. Zhu,et al.  Controllability of Weighted and Directed Networks with Nonidentical Node Dynamics , 2013 .

[16]  Witold Pedrycz,et al.  Granular Computing: Analysis and Design of Intelligent Systems , 2013 .

[17]  Witold Pedrycz,et al.  Granular Computing: Perspectives and Challenges , 2013, IEEE Transactions on Cybernetics.

[18]  Jun-Hai Zhai,et al.  An improved algorithm for calculating fuzzy attribute reducts , 2013, J. Intell. Fuzzy Syst..

[19]  Zhenmin Tang,et al.  Minimum cost attribute reduction in decision-theoretic rough set models , 2013, Inf. Sci..

[20]  Peng Li,et al.  A general frame for intuitionistic fuzzy rough sets , 2012, Inf. Sci..

[21]  Hong Zhao,et al.  Test-cost-sensitive attribute reduction of data with normal distribution measurement errors , 2012, ArXiv.

[22]  Tiejun Zhao,et al.  Research on search results optimization technology with category features integration , 2012, Int. J. Mach. Learn. Cybern..

[23]  Yuhua Qian,et al.  Test-cost-sensitive attribute reduction , 2011, Inf. Sci..

[24]  William Zhu,et al.  Optimal Sub-Reducts with Test Cost Constraint , 2011, RSKT.

[25]  Yee Leung,et al.  Theory and applications of granular labelled partitions in multi-scale decision tables , 2011, Inf. Sci..

[26]  David R. Hardoon,et al.  Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms , 2011, Int. J. Mach. Learn. Cybern..

[27]  Witold Pedrycz,et al.  Positive approximation: An accelerator for attribute reduction in rough set theory , 2010, Artif. Intell..

[28]  Guoyin Wang,et al.  Granular Computing based cognitive computing , 2009, 2009 8th IEEE International Conference on Cognitive Informatics.

[29]  Fan Min,et al.  A hierarchical model for test-cost-sensitive decision systems , 2009, Inf. Sci..

[30]  Qinghua Hu,et al.  Neighborhood rough set based heterogeneous feature subset selection , 2008, Inf. Sci..

[31]  Yiyu Yao,et al.  Attribute reduction in decision-theoretic rough set models , 2008, Inf. Sci..

[32]  Xizhao Wang,et al.  Induction of multiple fuzzy decision trees based on rough set technique , 2008, Inf. Sci..

[33]  Qinghua Hu,et al.  Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation , 2007, Pattern Recognit..

[34]  Chen Degang,et al.  A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets , 2007 .

[35]  Yiyu Yao,et al.  Granular Computing: basic issues and possible solutions , 2007 .

[36]  Qinghua Hu,et al.  A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets , 2007, Inf. Sci..

[37]  Yiyu Yao,et al.  On Reduct Construction Algorithms , 2006, Trans. Comput. Sci..

[38]  Wen-Xiu Zhang,et al.  Attribute Reduction in Concept Lattice Based on Discernibility Matrix , 2005, RSFDGrC.

[39]  Yiyu Yao,et al.  A Partition Model of Granular Computing , 2004, Trans. Rough Sets.

[40]  Fei-Yue Wang,et al.  Reduction and axiomization of covering generalized rough sets , 2003, Inf. Sci..

[41]  Dominik Slezak,et al.  Order Based Genetic Algorithms for the Search of Approximate Entropy Reducts , 2003, RSFDGrC.

[42]  Qiang Shen,et al.  Finding Rough Set Reducts with Ant Colony Optimization , 2003 .

[43]  Peter D. Turney Types of Cost in Inductive Concept Learning , 2002, ArXiv.

[44]  Dominik Slezak,et al.  Approximate Entropy Reducts , 2002, Fundam. Informaticae.

[45]  Wang Guo,et al.  Decision Table Reduction based on Conditional Information Entropy , 2002 .

[46]  Witold Pedrycz,et al.  Granular computing: an introduction , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[47]  Witold Pedrycz,et al.  Granular Computing - The Emerging Paradigm , 2007 .

[48]  Arif Ghafoor,et al.  Semantic Modeling and Knowledge Representation in Multimedia Databases , 1999, IEEE Trans. Knowl. Data Eng..

[49]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[50]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[51]  T. Y. Lin,et al.  Rough Sets and Data Mining , 1997, Springer US.

[52]  Tsau Young Lin,et al.  Rough Sets and Data Mining: Analysis of Imprecise Data , 1996 .

[53]  Edmund K. Burke,et al.  A Memetic Algorithm for University Exam Timetabling , 1995, PATAT.

[54]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[55]  Peter D. Turney Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm , 1994, J. Artif. Intell. Res..

[56]  Maciej Modrzejewski,et al.  Feature Selection Using Rough Sets Theory , 1993, ECML.

[57]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[58]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[59]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[60]  C. McDiarmid SIMULATED ANNEALING AND BOLTZMANN MACHINES A Stochastic Approach to Combinatorial Optimization and Neural Computing , 1991 .

[61]  Andrew W. Shogan,et al.  Semi-greedy heuristics: An empirical study , 1987 .

[62]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[63]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[64]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .