Neurofilament accumulations in amyotrophic lateral sclerosis patients’ motor neurons impair axonal initial segment integrity

[1]  S. K. Suthar,et al.  The Role of Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis: Identification of Signaling Pathways, Regulators, Molecular Interaction Networks, and Biological Functions through Bioinformatics , 2023, Brain sciences.

[2]  Sherif M. Elbasiouny,et al.  Motoneuron excitability dysfunction in ALS: Pseudo‐mystery or authentic conundrum? , 2022, The Journal of physiology.

[3]  Timothy A. Miller,et al.  Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. , 2022, The New England journal of medicine.

[4]  J. Twiss,et al.  Axon Initial Segments Are Required for Efficient Motor Neuron Axon Regeneration and Functional Recovery of Synapses , 2022, The Journal of Neuroscience.

[5]  T. Südhof,et al.  Endocytosis in the axon initial segment maintains neuronal polarity , 2022, Nature.

[6]  E. Hedlund,et al.  The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis , 2022, Biology.

[7]  Liping He,et al.  Crystal structure of Ankyrin-G in complex with a fragment of Neurofascin reveals binding mechanisms required for integrity of the axon initial segment , 2022, The Journal of biological chemistry.

[8]  P. Penzes,et al.  Roles and mechanisms of ankyrin-G in neuropsychiatric disorders , 2022, Experimental & Molecular Medicine.

[9]  K. Shen,et al.  The function of the axon initial segment in neuronal polarity. , 2022, Developmental biology.

[10]  Ilmin Kwon,et al.  Poly-dipeptides produced from C9orf72 hexanucleotide repeats cause selective motor neuron hyperexcitability in ALS , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Maxime Beau,et al.  Alterations of the axon initial segment in multiple sclerosis grey matter , 2022, bioRxiv.

[12]  Rémi Bos,et al.  Altered action potential waveform and shorter axonal initial segment in hiPSC-derived motor neurons with mutations in VRK1 , 2021, Neurobiology of Disease.

[13]  H. Zetterberg,et al.  Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons , 2022, Frontiers in Cell and Developmental Biology.

[14]  R. Powers,et al.  Axon initial segment geometry in relation to motoneuron excitability , 2021, PloS one.

[15]  Boris Guennewig,et al.  New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis , 2021, Translational neurodegeneration.

[16]  P. Avoni,et al.  Plasma and CSF Neurofilament Light Chain in Amyotrophic Lateral Sclerosis: A Cross-Sectional and Longitudinal Study , 2021, Frontiers in Aging Neuroscience.

[17]  T. Qian,et al.  Role of Blood Neurofilaments in the Prognosis of Amyotrophic Lateral Sclerosis: A Meta-Analysis , 2021, Frontiers in Neurology.

[18]  D. Debanne,et al.  Formin Activity and mDia1 Contribute to Maintain Axon Initial Segment Composition and Structure , 2021, Molecular Neurobiology.

[19]  V. Meininger,et al.  Neurofilament light and heterogeneity of disease progression in amyotrophic lateral sclerosis: development and validation of a prediction model to improve interventional trials , 2021, Translational neurodegeneration.

[20]  M. Schachner,et al.  Interplay in neural functions of cell adhesion molecule close homolog of L1 (CHL1) and Programmed Cell Death 6 (PDCD6) , 2021, FASEB bioAdvances.

[21]  P. Nissen,et al.  Mind the gap: molecular architecture of the axon initial segment - from fold prediction to a mechanistic model of function? , 2021, Journal of molecular biology.

[22]  Y. Marie,et al.  Impact of a frequent nearsplice SOD1 variant in amyotrophic lateral sclerosis: optimising SOD1 genetic screening for gene therapy opportunities , 2021, Journal of Neurology, Neurosurgery, and Psychiatry.

[23]  A. Kania,et al.  Paxillin Is Required for Proper Spinal Motor Axon Growth into the Limb , 2021, The Journal of Neuroscience.

[24]  P. van Damme,et al.  HDAC6 inhibition restores TDP‐43 pathology and axonal transport defects in human motor neurons with TARDBP mutations , 2021, The EMBO journal.

[25]  L. Pozzi,et al.  Current application of neurofilaments in amyotrophic lateral sclerosis and future perspectives , 2021, Neural Regeneration Research.

[26]  Sandy L. Klemm,et al.  Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons , 2020, Nature Neuroscience.

[27]  D. Debanne,et al.  Neural excitability increases with axonal resistance between soma and axon initial segment , 2020, Proceedings of the National Academy of Sciences.

[28]  Sangeetha Hareendran,et al.  Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord , 2020, Nature Communications.

[29]  C. Meehan,et al.  Increased Axon Initial Segment Length Results in Increased Na+ Currents in Spinal Motoneurones at Symptom Onset in the G127X SOD1 Mouse Model of Amyotrophic Lateral Sclerosis , 2020, Neuroscience.

[30]  P. van Damme,et al.  C9orf72-derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility , 2019, Science Advances.

[31]  A. Oguro-Ando,et al.  Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder , 2021, Frontiers in Cellular Neuroscience.

[32]  G. Soraru',et al.  Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers , 2020, Molecular neurodegeneration.

[33]  L. Petrucelli,et al.  C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy , 2020, Science Translational Medicine.

[34]  D. Reglodi,et al.  Differential Vulnerability of Oculomotor Versus Hypoglossal Nucleus During ALS: Involvement of PACAP , 2020, Frontiers in Neuroscience.

[35]  K. Blennow,et al.  A multi-center study of neurofilament assay reliability and inter-laboratory variability , 2020, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[36]  U. Stelzl,et al.  RIM-binding protein couples synaptic vesicle recruitment to release sites , 2020, The Journal of cell biology.

[37]  N. Suzuki,et al.  Omics Approach to Axonal Dysfunction of Motor Neurons in Amyotrophic Lateral Sclerosis (ALS) , 2020, Frontiers in Neuroscience.

[38]  M. Bickle,et al.  Knocking out C9ORF72 Exacerbates Axonal Trafficking Defects Associated with Hexanucleotide Repeat Expansion and Reduces Levels of Heat Shock Proteins , 2020, Stem cell reports.

[39]  F. Pallardó,et al.  Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders , 2020, Cells.

[40]  C. Meehan,et al.  Shorter axon initial segments do not cause repetitive firing impairments in the adult presymptomatic G127X SOD-1 Amyotrophic Lateral Sclerosis mouse , 2020, Scientific Reports.

[41]  Andong Zhao,et al.  Patient-Specific Cells for Modeling and Decoding Amyotrophic Lateral Sclerosis: Advances and Challenges , 2020, Stem Cell Reviews and Reports.

[42]  A. Burlingame,et al.  Mapping axon initial segment structure and function by multiplexed proximity biotinylation , 2020, Nature Communications.

[43]  L. Van Den Bosch,et al.  Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. , 2020, Seminars in cell & developmental biology.

[44]  S. Wilton,et al.  ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? , 2019, Front. Neurosci..

[45]  James Hawrot,et al.  Modeling cell-autonomous motor neuron phenotypes in ALS using iPSCs , 2019, Neurobiology of Disease.

[46]  James Briscoe,et al.  Establishing neuronal diversity in the spinal cord: a time and a place , 2019, Development.

[47]  R. Brette,et al.  Theoretical relation between axon initial segment geometry and excitability , 2019, bioRxiv.

[48]  Shiaoching Gong,et al.  Pathogenic Tau Impairs Axon Initial Segment Plasticity and Excitability Homeostasis , 2019, Neuron.

[49]  S. Shadfar,et al.  Motor Neuron Susceptibility in ALS/FTD , 2019, Front. Neurosci..

[50]  Alessandro Didonna,et al.  The role of neurofilament aggregation in neurodegeneration: lessons from rare inherited neurological disorders , 2019, Molecular Neurodegeneration.

[51]  E. Génin,et al.  Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10S59L/+ mouse , 2019, Acta Neuropathologica.

[52]  Andrew R. Bassett,et al.  Editing the Genome of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes. , 2019, Methods in molecular biology.

[53]  K. Qian,et al.  Modeling hallmark pathology using motor neurons derived from the family and sporadic amyotrophic lateral sclerosis patient-specific iPS cells , 2018, Stem Cell Research & Therapy.

[54]  Yi-Hsin Wu,et al.  Nck2 is essential for limb trajectory selection by spinal motor axons , 2018, Developmental dynamics : an official publication of the American Association of Anatomists.

[55]  H. Okano,et al.  Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent , 2018, Nature Medicine.

[56]  C. Davies,et al.  Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS , 2018, Cell Death & Disease.

[57]  M. Rasband,et al.  Axon initial segments: structure, function, and disease , 2018, Annals of the New York Academy of Sciences.

[58]  P. Corcia,et al.  Age-dependent neurodegeneration and organelle transport deficiencies in mutant TDP43 patient-derived neurons are independent of TDP43 aggregation , 2017, Neurobiology of Disease.

[59]  W. Robberecht,et al.  HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients , 2017, Nature Communications.

[60]  Gary S Bhumbra,et al.  Segregation of glutamatergic and cholinergic transmission at the mixed motoneuron Renshaw cell synapse , 2017, Scientific Reports.

[61]  E. Hedlund,et al.  Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis , 2017, Acta Neuropathologica.

[62]  M. Gorbatyuk,et al.  Neuronatin Protein in Health and Disease , 2017, Journal of cellular physiology.

[63]  O. Medalia,et al.  Phosphorylation-Induced Mechanical Regulation of Intrinsically Disordered Neurofilament Proteins. , 2016, Biophysical journal.

[64]  G. Comi,et al.  Unraveling gene expression profiles in peripheral motor nerve from amyotrophic lateral sclerosis patients: insights into pathogenesis , 2016, Scientific Reports.

[65]  V. Turk,et al.  Lysosomal cathepsins and their regulation in aging and neurodegeneration , 2016, Ageing Research Reviews.

[66]  Steven L Jones,et al.  Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity , 2016, Neural plasticity.

[67]  S. Kuwabara,et al.  Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis , 2016, PloS one.

[68]  J. Jankowsky,et al.  Amyloid-β plaques disrupt axon initial segments , 2016, Experimental Neurology.

[69]  Christophe Leterrier,et al.  The Axon Initial Segment, 50Years Later: A Nexus for Neuronal Organization and Function. , 2016, Current topics in membranes.

[70]  A. Capalbo,et al.  Discordant Growth of Monozygotic Twins Starts at the Blastocyst Stage: A Case Study , 2015, Stem cell reports.

[71]  S. Blanchard,et al.  Modeling amyotrophic lateral sclerosis in pure human iPSc-derived motor neurons isolated by a novel FACS double selection technique , 2015, Neurobiology of Disease.

[72]  Daniel C. Lu,et al.  Molecular and cellular development of spinal cord locomotor circuitry , 2015, Front. Mol. Neurosci..

[73]  J. D. Foster,et al.  Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability , 2015, Nature Communications.

[74]  M. Peschanski,et al.  Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes , 2014, Nature Biotechnology.

[75]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[76]  Lisle W. Blackbourn,et al.  Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. , 2014, Cell stem cell.

[77]  W. Gan,et al.  Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. , 2014, Human molecular genetics.

[78]  Bryan F. Shaw,et al.  Deamidation of asparagine to aspartate destabilizes Cu, Zn superoxide dismutase, accelerates fibrillization, and mirrors ALS-linked mutations. , 2013, Journal of the American Chemical Society.

[79]  G. Walko,et al.  Plectin–intermediate filament partnership in skin, skeletal muscle, and peripheral nerve , 2013, Histochemistry and Cell Biology.

[80]  G. Walko,et al.  Plectin–intermediate filament partnership in skin, skeletal muscle, and peripheral nerve , 2013, Histochemistry and Cell Biology.

[81]  M. Kiernan,et al.  The Puzzling Case of Hyperexcitability in Amyotrophic Lateral Sclerosis , 2013, Journal of clinical neurology.

[82]  Jean-Pierre Julien,et al.  Axonal transport deficits and neurodegenerative diseases , 2013, Nature Reviews Neuroscience.

[83]  Derek H. Oakley,et al.  Accelerated High-Yield Generation of Limb-Innervating Motor Neurons from Human Stem Cells , 2013, The Journal of Neuroscience.

[84]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[85]  V. Meininger,et al.  Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes , 2012, Journal of Medical Genetics.

[86]  M. Rasband,et al.  The axon initial segment in nervous system disease and injury , 2011, The European journal of neuroscience.

[87]  S. Blanchard,et al.  Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells. , 2011, Human molecular genetics.

[88]  H. Kampinga,et al.  The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. , 2011, The Biochemical journal.

[89]  Veeranna,et al.  The Myosin Va Head Domain Binds to the Neurofilament-L Rod and Modulates Endoplasmic Reticulum (ER) Content and Distribution within Axons , 2011, PloS one.

[90]  M. Strong,et al.  Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS) , 2009, Brain Research.

[91]  Fudong Liu,et al.  Disruption of the Axon Initial Segment Cytoskeleton Is a New Mechanism for Neuronal Injury , 2009, The Journal of Neuroscience.

[92]  M. Poo,et al.  A Selective Filter for Cytoplasmic Transport at the Axon Initial Segment , 2009, Cell.

[93]  Zoltan Nusser,et al.  Cell-Type-Dependent Molecular Composition of the Axon Initial Segment , 2008, The Journal of Neuroscience.

[94]  T. Jessell,et al.  Hox Repertoires for Motor Neuron Diversity and Connectivity Gated by a Single Accessory Factor, FoxP1 , 2008, Cell.

[95]  B. Kampa,et al.  Action potential generation requires a high sodium channel density in the axon initial segment , 2008, Nature Neuroscience.

[96]  T. Jessell,et al.  Early Motor Neuron Pool Identity and Muscle Nerve Trajectory Defined by Postmitotic Restrictions in Nkx6.1 Activity , 2008, Neuron.

[97]  S. Kato Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences , 2007, Acta Neuropathologica.

[98]  L. Chimelli,et al.  Quantitative evidence for neurofilament heavy subunit aggregation in motor neurons of spinal cords of patients with amyotrophic lateral sclerosis. , 2005, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[99]  K. Abe,et al.  Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene , 2005, Acta Neuropathologica.

[100]  G. Stephanopoulos,et al.  Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter. , 2004, Physiological genomics.

[101]  S. Yen,et al.  Focal accumulation of phosphorylated neurofilaments within anterior horn cell in familial amyotrophic lateral sclerosis , 2004, Acta Neuropathologica.

[102]  M. Schachner,et al.  Close Homolog of L1 Is an Enhancer of Integrin-mediated Cell Migration* , 2003, Journal of Biological Chemistry.

[103]  V. Bennett,et al.  Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments , 2001, The Journal of cell biology.

[104]  T. Jessell,et al.  Coordinate Regulation of Motor Neuron Subtype Identity and Pan-Neuronal Properties by the bHLH Repressor Olig2 , 2001, Neuron.

[105]  Silvia Arber,et al.  Requirement for the Homeobox Gene Hb9 in the Consolidation of Motor Neuron Identity , 1999, Neuron.

[106]  S. Pfaff,et al.  Active Suppression of Interneuron Programs within Developing Motor Neurons Revealed by Analysis of Homeodomain Factor HB9 , 1999, Neuron.

[107]  D. Cleveland,et al.  Slowing of axonal transport is a very early event in the toxicity of ALS–linked SOD1 mutants to motor neurons , 1999 .

[108]  J. Julien,et al.  Neurofilaments and motor neuron disease. , 1997, Trends in cell biology.

[109]  C. Wikkelsø,et al.  Patients with Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases Have Increased Levels of Neurofilament Protein in CSF , 1996, Journal of neurochemistry.

[110]  S. Sasaki,et al.  Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis , 1996, Neurology.

[111]  Guy A. Rouleau,et al.  SOD1 mutation is assosiated with accumulation of neurofilaments in amyotrophic lateral scelaries , 1996 .

[112]  A. Clark,et al.  SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. , 1996, Annals of neurology.

[113]  J. Julien,et al.  Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis , 1995, Nature.

[114]  G. Shaw,et al.  Distribution of plectin, an intermediate filament‐associated protein, in the adult rat central nervous system , 1994, Journal of neuroscience research.

[115]  B. Weisshaar,et al.  The low molecular weight form of microtubule-associated protein 2 is transported into both axons and dendrites , 1993, Neuroscience.

[116]  L. Cork,et al.  Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease , 1993, Cell.

[117]  S. Maruyama,et al.  Increase in diameter of the axonal initial segment is an early change in amyotrophic lateral sclerosis , 1992, Journal of the Neurological Sciences.

[118]  S. Maruyama,et al.  Ultrastructure of swollen proximal axons of anterior horn neurons in motor neuron disease , 1990, Journal of the Neurological Sciences.

[119]  S. Maruyama,et al.  Swellings of proximal axons in a case of motor neuron disease , 1989, Annals of neurology.

[120]  K. Angelides,et al.  Ankyrin and spectrin associate with voltage-dependent sodium channels in brain , 1988, Nature.

[121]  A. Hirano,et al.  Fine Structural Observations of Neurofilamentous Changes in Amyotrophic Lateral Sclerosis , 1984, Journal of neuropathology and experimental neurology.

[122]  L. Kurland,et al.  Fine Structural Study of Neurofibrillary Changes in a Family with Amyotrophic Lateral Sclerosis , 1984, Journal of neuropathology and experimental neurology.