A substantial population of low-mass stars in luminous elliptical galaxies

The stellar initial mass function (IMF) describes the mass distribution of stars at the time of their formation and is of fundamental importance for many areas of astrophysics. The IMF is reasonably well constrained in the disk of the Milky Way but we have very little direct information on the form of the IMF in other galaxies and at earlier cosmic epochs. Here we report observations of the Na i doublet and the Wing–Ford molecular FeH band in the spectra of elliptical galaxies. These lines are strong in stars with masses less than 0.3M⊙ (where M⊙ is the mass of the Sun) and are weak or absent in all other types of stars. We unambiguously detect both signatures, consistent with previous studies that were based on data of lower signal-to-noise ratio. The direct detection of the light of low-mass stars implies that they are very abundant in elliptical galaxies, making up over 80% of the total number of stars and contributing more than 60% of the total stellar mass. We infer that the IMF in massive star-forming galaxies in the early Universe produced many more low-mass stars than the IMF in the Milky Way disk, and was probably slightly steeper than the Salpeter form in the mass range 0.1M⊙ to 1M⊙.

[1]  Santiago Arribas,et al.  The effective temperature scale of giant stars (F0–K5) - II. Empirical calibration of versus colours and [Fe/H] , 1999 .

[2]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[3]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[4]  S. T. Ridgway,et al.  Effective temperatures of late-type stars : the field giants from K0 to M6. , 1980 .

[5]  S. Faber,et al.  Possible M dwarf enrichment in the semistellar nucleus of M31 , 1980 .

[6]  Matthew R. Bate,et al.  The Origin of the Initial Mass Function and Its Dependence on the Mean Jeans Mass in Molecular Clouds , 2004 .

[7]  John T. Rayner,et al.  An Infrared Spectroscopic Sequence of M, L, and T Dwarfs , 2004, astro-ph/0412313.

[8]  R. Bender,et al.  The Epochs of Early-Type Galaxy Formation as a Function of Environment , 2004, astro-ph/0410209.

[9]  D. Weinberg,et al.  On the evolutionary history of stars and their fossil mass and light , 2006, astro-ph/0604534.

[10]  Peter Hauschildt,et al.  Evolutionary models for solar metallicity low - mass stars: Mass - magnitude relationships and color - magnitude diagrams , 1998 .

[11]  Todd J. Henry,et al.  The mass-luminosity relation for stars of mass 1.0 to 0.08 solar mass , 1993 .

[12]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[13]  Berkeley,et al.  FeH Absorption in the Near-Infrared Spectra of Late M and L Dwarfs , 2002, astro-ph/0209083.

[14]  Ž. Ivezić,et al.  ACCEPTED FOR PUBLICATION IN APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 GALACTIC GLOBULAR AND OPEN CLUSTERS IN THE SLOAN DIGITAL SKY SURVEY. II. TEST OF THEORETICAL STELLAR ISOCHRONES , 2022 .

[15]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[16]  R. Dav'e The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? , 2007, 0710.0381.

[17]  R. Schiavon,et al.  Near-infrared Spectral Features in Single-aged Stellar Populations , 1999, astro-ph/9910274.

[18]  W. Ford,et al.  THE INFRARED SPECTRUM OF THE COOL DWARF WOLF 359 , 1969 .

[19]  Alessandro Bressan,et al.  Can the faint submillimetre galaxies be explained in the Λ cold dark matter model , 2005 .

[20]  M. Franx,et al.  STAR FORMATION RATES AND STELLAR MASSES OF z = 7–8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS , 2009, 0911.1356.

[21]  E. Hardy,et al.  The Low-Mass Stellar Content of Galaxies: Constraints through Hybrid Population Synthesis near 1 Micron , 1993 .

[22]  Wesley A. Traub,et al.  Extension of the effective temperature scale of giants to types later than M6 , 1998 .

[23]  T. Boroson,et al.  Color distributions in early type galaxies. III. Radial gradients in spectral features , 1991 .

[24]  H. Ford,et al.  Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0 , 2008, 0808.0077.

[25]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[26]  Garching,et al.  Stellar population models of Lick indices with variable element abundance ratios , 2003 .

[27]  Beatriz Barbuy,et al.  The Near-infrared Nai Doublet Feature in M Stars * , 1996 .

[28]  S. Arribas,et al.  THE EMPIRICAL SCALE OF TEMPERATURES OF THE LOW MAIN SEQUENCE (F0V-K5V) , 1996 .

[29]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[30]  S. C. Trager,et al.  The Stellar Population Histories of Local Early-Type Galaxies. I. Population Parameters , 2000, astro-ph/0001072.

[31]  K. Omukai,et al.  Metals, dust and the cosmic microwave background: fragmentation of high-redshift star-forming clouds , 2009, 0910.3665.

[32]  J. Beuzit,et al.  Accurate masses of very low mass stars: IV Improved mass-luminosity relations , 2000, astro-ph/0010586.

[33]  A. J. Cenarro,et al.  Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations? , 2003 .

[34]  Graham Berriman,et al.  Infrared Spectra of Low-Mass Stars: Toward a Temperature Scale for Red Dwarfs , 1996 .

[35]  I. Bonnell,et al.  Gravitational fragmentation and the formation of brown dwarfs in stellar clusters , 2008, 0807.0460.

[36]  A. Pickles,et al.  THE DWARF STAR CONTENT OF ELLIPTIC AND LENTICULAR GALAXIES , 1986 .

[37]  Napoli,et al.  Microlensing constraints on the Galactic bulge initial mass function , 2007, 0711.3758.

[38]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[39]  P. Dokkum,et al.  Evidence of Cosmic Evolution of the Stellar Initial Mass Function , 2007, 0710.0875.

[40]  A. Bolton,et al.  THE INITIAL MASS FUNCTION OF EARLY-TYPE GALAXIES , 2010 .

[41]  W. D. Vacca,et al.  THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS , 2009, 0909.0818.

[42]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[43]  M. Banerji,et al.  TIMESCALES FOR LOW-MASS STAR FORMATION IN EXTRAGALACTIC ENVIRONMENTS: IMPLICATIONS FOR THE STELLAR INITIAL MASS FUNCTION , 2008, 0810.3662.

[44]  L. Casagrande,et al.  M dwarfs: effective temperatures, radii and metallicities , 2008, 0806.2471.

[45]  R. Larson Thermal physics, cloud geometry and the stellar initial mass function , 2005 .