Pixnostics: Towards Measuring the Value of Visualization

During the last two decades a wide variety of advanced methods for the visual exploration of large data sets have been proposed. For most of these techniques user interaction has become a crucial element, since there are many situations in which a user or an analyst has to select the right parameter settings from among many or select a subset of the available attribute space for the visualization process, in order to construct valuable visualizations that provide insight, into the data and reveal interesting patterns. The right choice of input parameters is often essential, since suboptimal parameter settings or the investigation of irrelevant data dimensions make the exploration process more time consuming and may result in wrong conclusions. In this paper we propose a novel method for automatically determining meaningful parameter- and attribute settings based on the information content of the resulting visualizations. Our technique called Pixnostics, in analogy to Scagnostics (Wilkinson et al., 2005), automatically analyses pixel images resulting from diverse parameter mappings and ranks them according to the potential value for the user. This allows a more effective and more efficient visual data analysis process, since the attribute/parameter space is reduced to meaningful selections and thus the analyst obtains faster insight into the data. Real world applications are provided to show the benefit of the proposed approach

[1]  Stephen M. Casner,et al.  Task-analytic approach to the automated design of graphic presentations , 1991, TOGS.

[2]  S. Sitharama Iyengar,et al.  Content based image retrieval and information theory: A general approach , 2001, J. Assoc. Inf. Sci. Technol..

[3]  Erkki Oja,et al.  Entropy-based measures for clustering and SOM topology preservation applied to content-based image indexing and retrieval , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[4]  Jan M. Zytkow Types and forms of knowledge (patterns): decision trees , 2002 .

[5]  Jarke J. van Wijk,et al.  The value of visualization , 2005, VIS 05. IEEE Visualization, 2005..

[6]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[8]  Martin Wattenberg A note on space-filling visualizations and space-filling curves , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[9]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[10]  S. Sitharama Iyengar,et al.  Content based image retrieval and information theroy: a general approach , 2001 .

[11]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[12]  Donald H. House,et al.  On the optimization of visualizations of complex phenomena , 2005, VIS 05. IEEE Visualization, 2005..

[13]  Daniel A. Keim,et al.  Pixel bar charts: a visualization technique for very large multi-attribute data sets? , 2002, Inf. Vis..

[14]  Peter R. Keller,et al.  Visual cues - practical data visualization , 1993 .

[15]  Daniel A. Keim,et al.  Clustering techniques for large data sets—from the past to the future , 1999, KDD '99.

[16]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[17]  Ed H. Chi,et al.  A taxonomy of visualization techniques using the data state reference model , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[18]  Domingo Morales,et al.  A summary on entropy statistics , 1995, Kybernetika.

[19]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[20]  Robert L. Grossman,et al.  Graph-Theoretic Scagnostics , 2005, INFOVIS.

[21]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[22]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[23]  Steve Mann Intelligent Image Processing , 2001 .