Spatial–temporal analysis of species range expansion: the case of the mountain pine beetle, Dendroctonus ponderosae

Aim  The spatial extent of western Canada’s current epidemic of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is increasing. The roles of the various dispersal processes acting as drivers of range expansion are poorly understood for most species. The aim of this paper is to characterize the movement patterns of the mountain pine beetle in areas where range expansion is occurring, in order to describe the fine‐scale spatial dynamics of processes associated with mountain pine beetle range expansion.

[1]  R. Saini Area-wide control of insect pests: from research to field implementation , 2008 .

[2]  S. Gaines,et al.  The relationship between dispersal ability and geographic range size. , 2007, Ecology letters.

[3]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[4]  Christelle Robinet,et al.  Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France , 2007 .

[5]  Colin Robertson,et al.  STAMP: spatial–temporal analysis of moving polygons , 2007, J. Geogr. Syst..

[6]  Environmental characteristics of mountain pine beetle infestation hot spots , 2007 .

[7]  A. Carroll The Mountain Pine Beetle Dendroctonus ponderosae in Western North America: Potential for Area-Wide Integrated Management , 2007 .

[8]  J. Régnière,et al.  Impacts of Climate Change on Range Expansion by the Mountain Pine Beetle , 2007 .

[9]  C. Parmesan Ecological and Evolutionary Responses to Recent Climate Change , 2006 .

[10]  Brian H. Aukema,et al.  Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal development and spatial synchrony within the present outbreak , 2006 .

[11]  Trisalyn A. Nelson,et al.  Large-area mountain pine beetle infestations: Spatial data representation and accuracy , 2006 .

[12]  M. Wulder,et al.  Detection, mapping, and monitoring of the mountain pine beetle. , 2006 .

[13]  A. Carroll,et al.  The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. , 2006 .

[14]  A. Carroll,et al.  Forest, climate and mountain pine beetle outbreak dynamics in Western Canada. , 2006 .

[15]  B. Wilson,et al.  The mountain pine beetle: a synthesis of biology, management and impacts on lodgepole pine. , 2006 .

[16]  Mark L. Taper,et al.  Theoretical models of species' borders: single species approaches , 2005 .

[17]  Henry F. Diaz,et al.  Projected temperature changes along the American cordillera and the planned GCOS network , 2004 .

[18]  R. Karban,et al.  Physiological tolerance, climate change, and a northward range shift in the spittlebug, Philaenus spumarius , 2004 .

[19]  P. Jackson,et al.  Modelling of Mountain Pine Beetle Transport and Dispersion using Atmospheric Models , 2004 .

[20]  B. Lamb,et al.  Surrogate Pheromone Plumes in Three Forest Trunk Spaces: Composite Statistics and Case Studies , 2004 .

[21]  J. Logan,et al.  Ecological consequences of climate change altered forest insect disturbanceregimes , 2004 .

[22]  D. Geiszler,et al.  Modeling the dynamics of mountain pine beetle aggregation in a lodgepole pine stand , 2004, Oecologia.

[23]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[24]  S. Schneider,et al.  Fingerprints of global warming on wild animals and plants , 2003, Nature.

[25]  David W. Williams,et al.  Climate change and the outbreak ranges of two North American bark beetles , 2002 .

[26]  O. Hoegh‐Guldberg,et al.  Ecological responses to recent climate change , 2002, Nature.

[27]  T. M. Bezemer,et al.  Herbivory in global climate change research: direct effects of rising temperature on insect herbivores , 2002 .

[28]  L. Safranyik Management of Lodgepole Pine to Reduce Losses From The Mountain Pine Beetle , 2002 .

[29]  Yukio Sadahiro,et al.  A computational approach for the analysis of changes in polygon distributions , 2001, J. Geogr. Syst..

[30]  Jesse A. Logan,et al.  Ghost Forests, Global Warming and the Mountain Pine Beetle , 2001 .

[31]  Jesse A. Logan,et al.  Latitudinal variation in Dendroctonus ponderosae (Coleoptera: Scolytidae) development time and adult size , 2001, The Canadian Entomologist.

[32]  L. Conradt,et al.  Ecological and evolutionary processes at expanding range margins , 2001 .

[33]  J. O H N,et al.  Herbivory in global climate change research: direct effects of rising temperature on insect herbivores , 2001 .

[34]  L. Fahrig,et al.  On the usage and measurement of landscape connectivity , 2000 .

[35]  Andrew R. Solow,et al.  Choosing reserve networks with incomplete species information , 2000 .

[36]  Jesse A. Logan,et al.  Model Analysis of Mountain Pine Beetle (Coleoptera: Scolytidae) Seasonality , 1999 .

[37]  Matthew P. Ayres,et al.  Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae) , 1999 .

[38]  Dawn M. Kaufman,et al.  THE GEOGRAPHIC RANGE: Size, Shape, Boundaries, and Internal Structure , 1996 .

[39]  Kevin J. Gaston,et al.  Measuring geographic range sizes , 1994 .

[40]  R. H. Silversides,et al.  Dispersal of released mountain pine beetles under the canopy of a mature lodgepole pine stand , 1992 .

[41]  Denis White,et al.  Cartographic and Geometric Components of a Global Sampling Design for Environmental Monitoring , 1992 .

[42]  Simon A. Levin,et al.  The Spread of a Reinvading Species: Range Expansion in the California Sea Otter , 1988, The American Naturalist.

[43]  K. Raffa The Mountain Pine Beetle in Western North America , 1988 .

[44]  R. Macarthur Mathematical Ecology and Its Place among the Sciences. (Book Reviews: Geographical Ecology. Patterns in the Distribution of Species) , 1974 .

[45]  R. L. Furniss,et al.  SCOLYTIDS (COLEOPTERA) ON SNOWFIELDS ABOVE TIMBERLINE IN OREGON AND WASHINGTON , 1972, The Canadian Entomologist.