Drift Estimation of Multiscale Diffusions Based on Filtered Data

We study the problem of drift estimation for two-scale continuous time series. We set ourselves in the framework of overdamped Langevin equations, for which a single-scale surrogate homogenized equation exists. In this setting, estimating the drift coefficient of the homogenized equation requires pre-processing of the data, often in the form of subsampling; this is because the two-scale equation and the homogenized single-scale equation are incompatible at small scales, generating mutually singular measures on the path space. We avoid subsampling and work instead with filtered data, found by application of an appropriate kernel function, and compute maximum likelihood estimators based on the filtered process. We show that the estimators we propose are asymptotically unbiased and demonstrate numerically the advantages of our method with respect to subsampling. Finally, we show how our filtered data methodology can be combined with Bayesian techniques and provide a full uncertainty quantification of the inference procedure.

[1]  Grigorios A. Pavliotis,et al.  Frequency Domain Estimation of Integrated Volatility for Itô Processes in the Presence of Market-Microstructure Noise , 2009, Multiscale Model. Simul..

[2]  Robert Azencott,et al.  Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions , 2010 .

[3]  Assyr Abdulle,et al.  A Bayesian Numerical Homogenization Method for Elliptic Multiscale Inverse Problems , 2018, SIAM/ASA J. Uncertain. Quantification.

[4]  Siragan Gailus,et al.  Statistical Inference for Perturbed Multiscale Dynamical Systems , 2015 .

[5]  Eric Vanden-Eijnden,et al.  Reconstruction of diffusions using spectral data from timeseries , 2006 .

[6]  Eric Vanden-Eijnden,et al.  Diffusion Estimation from Multiscale Data by Operator Eigenpairs , 2011, Multiscale Model. Simul..

[7]  C. J. Cotter,et al.  Estimating eddy diffusivities from noisy Lagrangian observations , 2009, 0904.4817.

[8]  Robert Azencott,et al.  SUB-SAMPLING AND PARAMETRIC ESTIMATION FOR MULTISCALE DYNAMICS ∗ , 2013 .

[9]  Assyr Abdulle,et al.  Ensemble Kalman filter for multiscale inverse problems , 2019, Multiscale Model. Simul..

[10]  W. Marsden I and J , 2012 .

[11]  Grigorios A. Pavliotis,et al.  Parameter estimation for multiscale diffusions : an overview , 2012 .

[12]  Michael Sørensen,et al.  Estimating equations based on eigenfunctions for a discretely observed diffusion process , 1999 .

[13]  P. Mykland,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[14]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[15]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[16]  Grigorios A. Pavliotis,et al.  A new framework for extracting coarse-grained models from time series with multiscale structure , 2014, J. Comput. Phys..

[17]  Andrew M. Stuart,et al.  Remarks on Drift Estimation for Diffusion Processes , 2009, Multiscale Model. Simul..

[18]  J. R. Maddison,et al.  Bayesian inference of ocean diffusivity from Lagrangian trajectory data , 2018, Ocean Modelling.

[19]  G. A. Pavliotis,et al.  Parameter Estimation for Multiscale Diffusions , 2007 .

[20]  Assyr Abdulle,et al.  Numerical Homogenization and Model Order Reduction for Multiscale Inverse Problems , 2019, Multiscale Model. Simul..

[21]  A. M. Stuart,et al.  Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs , 2012, 1202.0976.

[22]  H. Thompson,et al.  High-Frequency Financial Econometrics , 2016 .

[23]  G. A. Pavliotis,et al.  Multiscale modelling and inverse problems , 2010, 1009.2943.

[24]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[25]  Andrew M. Stuart,et al.  Iterative updating of model error for Bayesian inversion , 2017, 1707.04246.

[26]  G. Pavliotis,et al.  Data-driven coarse graining in action: Modeling and prediction of complex systems. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Siragan Gailus,et al.  Discrete-Time Statistical Inference for Multiscale Diffusions , 2018, Multiscale Model. Simul..

[28]  G. Pavliotis Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations , 2014 .

[29]  Grigorios A. Pavliotis,et al.  Semiparametric Drift and Diffusion Estimation for Multiscale Diffusions , 2013, Multiscale Model. Simul..

[30]  G. A. Pavliotis,et al.  Maximum likelihood drift estimation for multiscale diffusions , 2008, 0806.3248.

[31]  Grigorios A. Pavliotis,et al.  Eigenfunction martingale estimating functions and filtered data for drift estimation of discretely observed multiscale diffusions , 2021, ArXiv.

[32]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[33]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[34]  Vladas Sidoravicius,et al.  Stochastic Processes and Applications , 2007 .

[35]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[36]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[37]  Daniela Calvetti,et al.  Dynamic updating of numerical model discrepancy using sequential sampling , 2014 .