Correlations among size, defects, and photoluminescence in ZnO nanoparticles

We studied the correlations among size, defects, and photoluminescence emissions in ZnO nanoparticles of sizes ranging from 25 to 73 nm. The impurities and defects were characterized by Fourier-transform infrared spectroscopy and Raman spectroscopy. Particles of larger size revealed fewer surface impurities and enhanced E2 mode of hexagonal ZnO crystals, while the oxygen vacancy centers did not vary significantly with particle size. A simultaneous increase of excitonic luminescence and defect luminescence intensities with the increase of particle size is shown, indicating both emissions are subjected to nonradiative quenching by near surface defects. The study on the size-dependent green luminescence in our samples suggests that the emission might be a bulk property instead of having a surface origin in nanostructured ZnO. Two different radiative recombination processes are involved in the excitonic emission of ZnO. While the slow decay component (370 ps) did not depend on particle size, the fast componen...

[1]  A. Waag,et al.  Temperature-dependent luminescence dynamics in ZnO nanorods , 2005 .

[2]  K. Ucer,et al.  Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors , 2004 .

[3]  R. T. Williams,et al.  Time-of-flight study of bound exciton polariton dispersive propagation in ZnO , 2005 .

[4]  M. Rajalakshmi,et al.  Optical phonon confinement in zinc oxide nanoparticles , 2000 .

[5]  Masashi Kawasaki,et al.  Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature , 1997 .

[6]  Kam Sing Wong,et al.  Time-resolved photoluminescence study of a ZnO thin film grown on a (100) silicon substrate , 2003 .

[7]  Manuel Cardona,et al.  Resonant Raman scattering in ZnO , 1977 .

[8]  Jun Li,et al.  Preparation and photoluminescence of ZnO nanostructures by thermal evaporation growth without catalysts , 2005 .

[9]  F. Ren,et al.  Optical properties of Zn1−xMgxO nanorods using catalysis-driven molecular beam epitaxy , 2003 .

[10]  G. Yi,et al.  Time-resolved photoluminescence of the size-controlled ZnO nanorods , 2003 .

[11]  C. Minero,et al.  Phototransformations of nitrogen containing organic compounds over irradiated semiconductor metal oxides: Nitrobenzene and Atrazine over TiO2 and ZnO , 1993 .

[12]  G. Kelsall,et al.  Photoelectrophoresis of colloidal iron oxides 1. Hematite (α-Fe2O3) , 1993 .

[13]  Gregory J. Exarhos,et al.  Influence of processing variables on the structure and properties of ZnO films , 1995 .

[14]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[15]  Dapeng Yu,et al.  Optical properties of the ZnO nanotubes synthesized via vapor phase growth , 2003 .

[16]  K. Ucer,et al.  Synthesis and optical properties of ZnO nanostructures with different morphologies , 2006 .

[17]  Denis L. Rousseau,et al.  First-Order Raman Effect in Wurtzite-Type Crystals , 1969 .

[18]  A. Balandin,et al.  Interface and confined optical phonons in wurtzite nanocrystals , 2004, cond-mat/0405681.

[19]  T. Strachowski,et al.  Luminescence of ZnO nanopowders , 2004 .

[20]  Yi Gu,et al.  Quantum confinement in ZnO nanorods , 2004 .

[21]  A. Balandin,et al.  Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals , 2006 .

[22]  Bruno K. Meyer,et al.  Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure , 2002 .

[23]  Bin Yao,et al.  ZnO p-n junction light-emitting diodes fabricated on sapphire substrates , 2006 .

[24]  Tadashi Itoh,et al.  Luminescence of excitons in mesoscopic ZnO particles , 2005 .

[25]  R. T. Williams,et al.  Luminescence and Stimulated Emission in Zinc Oxide Nanoparticles, Films, and Crystals , 2003 .

[26]  A. Meijerink,et al.  The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles , 2001 .

[27]  K. Ucer,et al.  Giant oscillator strength of excitons in bulk and nanostructured systems , 2005 .

[28]  Henryk Temkin,et al.  Size-dependent surface luminescence in ZnO nanowires , 2004 .

[29]  H. M. Jang,et al.  Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy , 2002 .

[30]  Shinobu Fujihara,et al.  Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719 , 2006 .

[31]  W. K. Chan,et al.  Time-resolved photoluminescence from ZnO nanostructures , 2005 .

[32]  Alexander A. Balandin,et al.  Polar optical phonons in wurtzite spheroidal quantum dots: theory and application to ZnO and ZnO/MgZnO nanostructures , 2004, cond-mat/0411742.

[33]  Martin Strassburg,et al.  Nitrogen-related local vibrational modes in ZnO:N , 2002 .

[34]  A. Balandin,et al.  Origin of the optical phonon frequency shifts in ZnO quantum dots , 2005 .