Exploring geographic hotspots using topological data analysis

This article describes a scalar field topology (SFT)‐based methodology for the interactive characterization and analysis of hotspots for density fields defined on a regular grid. In contrast to the common approach of simply identifying hotspots as areas that exceed a chosen density threshold, SFT provides various data abstractions—such as the merge tree and the Morse complex—to characterize hotspots and their boundaries at multiple scales. Moreover, SFT enables the ranking of hotspots based on analyst‐defined importance measures, which also makes it possible to explore hotspots using a level‐of‐detail approach. We present a visual analytics system to support analysts in hotspot analysis and abstraction using SFT, and we demonstrate the merit of the proposed SFT‐based methodology on two crime datasets.

[1]  Jean P. Bizimana,et al.  Spatio‐temporal patterns of malaria incidence in Rwanda , 2020, Trans. GIS.

[2]  Xingxing Zhou,et al.  Mining spatial patterns of food culture in China using restaurant POI data , 2020, Trans. GIS.

[3]  Ross Maciejewski,et al.  Localized Topological Simplification of Scalar Data , 2020, IEEE Transactions on Visualization and Computer Graphics.

[4]  David S. Ebert,et al.  A Visual Analytics Approach to Facilitate Crime Hotspot Analysis , 2020, Comput. Graph. Forum.

[5]  Julien Tierny,et al.  Ranking Viscous Finger Simulations to an Acquired Ground Truth with Topology-Aware Matchings , 2019, 2019 IEEE 9th Symposium on Large Data Analysis and Visualization (LDAV).

[6]  Julien Tierny,et al.  A Topological Data Analysis perspective on noncovalent interactions in relativistic calculations , 2019, International Journal of Quantum Chemistry.

[7]  Martin Falk,et al.  An Overview of the Topology ToolKit , 2019, Mathematics and Visualization.

[8]  Julien Jomier,et al.  Task-Based Augmented Contour Trees with Fibonacci Heaps , 2019, IEEE Transactions on Parallel and Distributed Systems.

[9]  Valerio Pascucci,et al.  Shared-Memory Parallel Computation of Morse-Smale Complexes with Improved Accuracy , 2019, IEEE Transactions on Visualization and Computer Graphics.

[10]  Bei Wang,et al.  Topological Data Analysis of Functional MRI Connectivity in Time and Space Domains , 2018, CNI@MICCAI.

[11]  Yiran Chen,et al.  HiSpatialCluster: A novel high‐performance software tool for clustering massive spatial points , 2018, Trans. GIS.

[12]  Jean-Paul Chilès,et al.  Fifty Years of Kriging , 2018 .

[13]  Joshua A. Levine,et al.  The Topology ToolKit , 2018, IEEE Transactions on Visualization and Computer Graphics.

[14]  Valerio Pascucci,et al.  TopoMS: Comprehensive topological exploration for molecular and condensed‐matter systems , 2018, J. Comput. Chem..

[15]  Artur Gramacki,et al.  Nonparametric Kernel Density Estimation and Its Computational Aspects , 2017 .

[16]  Daniel Liadsky,et al.  The interaction between individual, social and environmental factors and their influence on dietary intake among adults in Toronto , 2017, Trans. GIS.

[17]  B. Hamann,et al.  Viscous Fingering: A Topological Visual Analytic Approach , 2017 .

[18]  Gunther H. Weber,et al.  Nested Tracking Graphs , 2017, Comput. Graph. Forum.

[19]  George J. Chirima,et al.  Comparison of Kernel Density and Local Convex Hull Methods for Assessing Distribution Ranges of Large Mammalian Herbivores , 2017, Trans. GIS.

[20]  Creto Augusto Vidal,et al.  MSKDE - Using Marching Squares to Quickly Make High Quality Crime Hotspot Maps , 2016, 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).

[21]  Hans Hagen,et al.  A Survey of Topology‐based Methods in Visualization , 2016, Comput. Graph. Forum.

[22]  Valerio Pascucci,et al.  Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials , 2016, IEEE Transactions on Visualization and Computer Graphics.

[23]  Qi Zhou,et al.  Comparative Study of Approaches to Delineating Built‐Up Areas Using Road Network Data , 2015, Trans. GIS.

[24]  Hans Hagen,et al.  Understanding hotspots: a topological visual analytics approach , 2015, SIGSPATIAL/GIS.

[25]  Anton Borg,et al.  Crime Hotspots: An Evaluation of the KDE Spatial Mapping Technique , 2015, 2015 European Intelligence and Security Informatics Conference.

[26]  Vijay Natarajan,et al.  Felix: A Topology Based Framework for Visual Exploration of Cosmic Filaments , 2015, IEEE Transactions on Visualization and Computer Graphics.

[27]  C. Chapman,et al.  Analyzing Animal Movement Characteristics From Location Data , 2015, Trans. GIS.

[28]  D G Krige,et al.  A statistical approach to some mine valuation and allied problems on the Witwatersrand , 2015 .

[29]  C. Autermann,et al.  enviroCar: A Citizen Science Platform for Analyzing and Mapping Crowd‐Sourced Car Sensor Data , 2015, Trans. GIS.

[30]  Leila De Floriani,et al.  Morse complexes for shape segmentation and homological analysis: discrete models and algorithms , 2015, Comput. Graph. Forum.

[31]  Xiang Li,et al.  Detecting and Analyzing Mobility Hotspots using Surface Networks , 2014, Trans. GIS.

[32]  David S. Ebert,et al.  Proactive Spatiotemporal Resource Allocation and Predictive Visual Analytics for Community Policing and Law Enforcement , 2014, IEEE Transactions on Visualization and Computer Graphics.

[33]  Jean-Philip Piquemal,et al.  Characterizing Molecular Interactions in Chemical Systems , 2014, IEEE Transactions on Visualization and Computer Graphics.

[34]  Bo Cheng,et al.  Modeling Users' Behavior for Testing the Performance of a Web Map Tile Service , 2014 .

[35]  Spencer Chainey,et al.  Examining the influence of cell size and bandwidth size on kernel density estimation crime hotspot maps for predicting spatial patterns of crime , 2014 .

[36]  Ray W. Grout,et al.  Stability of Dissipation Elements: A Case Study in Combustion , 2014, Comput. Graph. Forum.

[37]  N. Koutsias,et al.  Fire occurrence zones: kernel density estimation of historical wildfire ignitions at the national level, Greece , 2014 .

[38]  Jarke J. van Wijk,et al.  Contour based visualization of vessel movement predictions , 2014, Int. J. Geogr. Inf. Sci..

[39]  David S. Ebert,et al.  A Mobile Visual Analytics Approach for Law Enforcement Situation Awareness , 2014, 2014 IEEE Pacific Visualization Symposium.

[40]  Nils-Bastian Heidenreich,et al.  Bandwidth selection for kernel density estimation: a review of fully automatic selectors , 2013, AStA Advances in Statistical Analysis.

[41]  Hans-Christian Hege,et al.  Two-Dimensional Time-Dependent Vortex Regions Based on the Acceleration Magnitude , 2011, IEEE Transactions on Visualization and Computer Graphics.

[42]  Shino Shiode,et al.  Street‐level Spatial Scan Statistic and STAC for Analysing Street Crime Concentrations , 2011, Trans. GIS.

[43]  Helwig Hauser,et al.  Interactive visualization of streaming data with Kernel Density Estimation , 2011, 2011 IEEE Pacific Visualization Symposium.

[44]  T. Sousbie The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.

[45]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[46]  Colin Flint,et al.  Spatializing Social Networks: Using Social Network Analysis to Investigate Geographies of Gang Rivalry, Territoriality, and Violence in Los Angeles , 2010 .

[47]  W. Cleveland,et al.  A Visual Analytics Approach to Understanding Spatiotemporal Hotspots , 2010, IEEE Transactions on Visualization and Computer Graphics.

[48]  William Ribarsky,et al.  Multi-Focused Geospatial Analysis Using Probes , 2008, IEEE Transactions on Visualization and Computer Graphics.

[49]  Giuseppe Borruso,et al.  Network Density Estimation: A GIS Approach for Analysing Point Patterns in a Network Space , 2008, Trans. GIS.

[50]  Lisa Tompson,et al.  The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime , 2008 .

[51]  Javier Bustamante,et al.  An integrated framework to map animal distributions in large and remote regions , 2007 .

[52]  Valerio Pascucci,et al.  Understanding the Structure of the Turbulent Mixing Layer in Hydrodynamic Instabilities , 2006, IEEE Transactions on Visualization and Computer Graphics.

[53]  Valerio Pascucci,et al.  Persistence-sensitive simplification functions on 2-manifolds , 2006, SCG '06.

[54]  S. Chainey,et al.  GIS and Crime Mapping , 2005 .

[55]  Jack Snoeyink,et al.  Simplifying flexible isosurfaces using local geometric measures , 2004, IEEE Visualization 2004.

[56]  Neil Stuart,et al.  When is a hotspot a hotspot? A procedure for creating statistically robust hotspot maps of crime , 2002 .

[57]  David O'Sullivan,et al.  Geographic Information Analysis , 2002 .

[58]  Jerry H. Ratcliffe,et al.  Aoristic Signatures and the Spatio-Temporal Analysis of High Volume Crime Patterns , 2002 .

[59]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[60]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[61]  Frederik P. Agterberg,et al.  Interactive spatial data analysis , 1996 .

[62]  R. Webster,et al.  Kriging: a method of interpolation for geographical information systems , 1990, Int. J. Geogr. Inf. Sci..

[63]  Ernst P. Mücke,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1990, TOGS.

[64]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[65]  Alexander Bock,et al.  TopoAngler: Interactive Topology-Based Extraction of Fishes , 2018, IEEE Transactions on Visualization and Computer Graphics.

[66]  Ned Levine,et al.  CrimeStat: A Spatial Statistical Program for the Analysis of Crime Incidents , 2017, Encyclopedia of GIS.

[67]  Aaron Knoll,et al.  OSPRay - A CPU Ray Tracing Framework for Scientific Visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[68]  Ray W. Grout,et al.  Identifying turbulent structures through topological segmentation , 2016 .

[69]  Jarke J. van Wijk,et al.  Interactive Density Maps for Moving Objects , 2012, IEEE Computer Graphics and Applications.

[70]  Hamish A. Carr,et al.  Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree , 2010, Comput. Geom..

[71]  J. Harer,et al.  Computational Topology: An Introduction , 2009 .

[72]  J. Ratcliffe Crime Mapping: Spatial and Temporal Challenges , 2009 .

[73]  Ned Levine CrimeStat: A Spatial Statistical Program for the Analysis of Crime Incidents , 2008, Encyclopedia of GIS.

[74]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[75]  Roel Hospel,et al.  Morse Theory , 1999 .

[76]  M. Kulldorff A spatial scan statistic , 1997 .

[77]  Peter John Wood,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images , 2022 .

[78]  Séminaire Lotharingien de Combinatoire 48 (2002), Article B48c A USER’S GUIDE TO DISCRETE MORSE THEORY , 2022 .

[79]  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS Interactive Exploration and Analysis o , 2022 .