Finite Markov Chain Results in Evolutionary Computation: a Tour D'horizon

The theory of evolutionary computation has been enhanced rapidly during the last decade. This survey is the attempt to summarize the results regarding the limit and nite time behavior of evolutionary algorithms with nite search spaces and discrete time scale. Results on evolutionary algorithms beyond nite space and discrete time are also presented but with reduced elaboration.

[1]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[2]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[3]  Luc Devroye,et al.  On the Convergence of Statistical Search , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  U. G. Oppel,et al.  Auf der Zufallssuche basierende Evolutionsprozesse , 1978 .

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Marius Iosifescu,et al.  Finite Markov Processes and Their Applications , 1981 .

[7]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[8]  W. Ebeling,et al.  Models of darwinian processes and evolutionary principles. , 1982, Bio Systems.

[9]  J´nos Pintér,et al.  Convergence properties of stochastic optimization procedures , 1984 .

[10]  S. M. Ermakov,et al.  On Random Search for a Global Extremum , 1984 .

[11]  Georg Rappl,et al.  Konvergenzraten von Random-Search-Verfahren zur globalen Optimierung , 1984 .

[12]  Armin Scheel,et al.  Beitrag zur Theorie der Evolutionsstrategie , 1985 .

[13]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[14]  Peter L. Hammer,et al.  From Linear Separability to Unimodality: A Hierarchy of Pseudo-Boolean Functions , 1988, SIAM J. Discret. Math..

[15]  G. Rappl On Linear Convergence of a Class of Random Search Algorithms , 1989 .

[16]  Yves Crama,et al.  Recognition problems for special classes of polynomials in 0–1 variables , 1989, Math. Program..

[17]  van Km Kees Hee,et al.  A general theory of genetic algorithms , 1989 .

[18]  Pierre Priouret,et al.  Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.

[19]  A. E. Eiben,et al.  Global Convergence of Genetic Algorithms: A Markov Chain Analysis , 1990, PPSN.

[20]  Eugene Semenkin,et al.  Optimization of unimodal monotone pseudoboolean functions , 1990, Kybernetika.

[21]  Gunar E. Liepins,et al.  Punctuated Equilibria in Genetic Search , 1991, Complex Syst..

[22]  Avi Wigderson,et al.  An Analysis of a Simple Genetic Algorithm , 1991, ICGA.

[23]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[24]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[25]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[26]  Hans-Paul Schwefel,et al.  Evolutionary Programming and Evolution Strategies: Similarities and Differences , 1993 .

[27]  Lalit M. Patnaik,et al.  Binomially Distributed Populations for Modelling GAs , 1993, ICGA.

[28]  Heinz Mühlenbein,et al.  The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.

[29]  S. Arunkumar,et al.  Genetic search algorithms and their randomized operators , 1993 .

[30]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.

[31]  José Carlos Príncipe,et al.  A Markov Chain Framework for the Simple Genetic Algorithm , 1993, Evolutionary Computation.

[32]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[33]  Uday Kumar Chakraborty,et al.  Using Reliability Analysis to Estimate the Number of Generations to Convergence in Genetic Algorithms , 1993, Inf. Process. Lett..

[34]  Kalyanmoy Deb,et al.  Long Path Problems , 1994, PPSN.

[35]  D. Fogel ASYMPTOTIC CONVERGENCE PROPERTIES OF GENETIC ALGORITHMS AND EVOLUTIONARY PROGRAMMING: ANALYSIS AND EXPERIMENTS , 1994 .

[36]  Siddhartha Bhattacharyya,et al.  An Analysis of Non-Binary Genetic Algorithms with Cardinality 2υ , 1994, Complex Syst..

[37]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.

[38]  Prügel-Bennett,et al.  Analysis of genetic algorithms using statistical mechanics. , 1994, Physical review letters.

[39]  Kenneth A. De Jong,et al.  Using Markov Chains to Analyze GAFOs , 1994, FOGA.

[40]  Alden H. Wright,et al.  Stability of Vertex Fixed Points and Applications , 1994, FOGA.

[41]  Alden H. Wright,et al.  Simple Genetic Algorithms with Linear Fitness , 1994, Evolutionary Computation.

[42]  Günter Rudolph,et al.  Convergence of non-elitist strategies , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[43]  Raphaël Cerf,et al.  A NEW GENETIC ALGORITHM , 1996 .

[44]  Alden H. Wright,et al.  Finiteness of the Fixed Point Set for the Simple Genetic Algorithm , 1995, Evolutionary Computation.

[45]  H. Schwefel,et al.  Analyzing (1; ) Evolution Strategy via Stochastic Approximation Methods , 1995 .

[46]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.

[47]  H. Schwefel,et al.  Establishing connections between evolutionary algorithms and stochastic approximation , 1995 .

[48]  Atam P. Dhawan,et al.  Genetic Algorithms as Global Random Search Methods: An Alternative Perspective , 1995, Evolutionary Computation.

[49]  David E. Goldberg,et al.  Parallel Recombinative Simulated Annealing: A Genetic Algorithm , 1995, Parallel Comput..

[50]  B. Goertzel A convergence theorem for the simple GA with population size tending to infinity , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[51]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[52]  Joe Suzuki,et al.  A Markov chain analysis on simple genetic algorithms , 1995, IEEE Trans. Syst. Man Cybern..

[53]  Stefan Voget,et al.  A Central Limit Theorem for the Population Process of Genetic Algorithms , 1995, Complex Syst..

[54]  Alden H. Wright,et al.  A Search for Counterexamples to Two Conjectures on the Simple Genetic Algorithm , 1996, FOGA.

[55]  Gary J. Koehler Diagonalizing the Simple GA Mixing Matrix , 1996, FOGA.

[56]  Haldun Aytug,et al.  Stopping Criteria for Finite Length Genetic Algorithms , 1996, INFORMS J. Comput..

[57]  Günter Rudolph,et al.  How Mutation and Selection Solve Long-Path Problems in Polynomial Expected Time , 1996, Evolutionary Computation.

[58]  Joe Suzuki,et al.  A Further Result on the Markov Chain Model of Genetic Algorithms and Its Application to a Simulated Annealing-like Strategy , 1998, FOGA.

[59]  Adam Prügel-Bennett,et al.  Genetic Algorithm Dynamics in a Two-well Potential , 1996, FOGA.

[60]  T. Asselmeyer Uniied Description of Evolutionary Strategies over Continous Parameter Spaces , 1996 .

[61]  R. Cerf The dynamics of mutation-selection algorithms with large population sizes , 1996 .

[62]  Stefan Voget Theoretical Analysis of Genetic Algorithms with Infinite Population Size , 1996, Complex Syst..

[63]  Günter Rudolph,et al.  Convergence of evolutionary algorithms in general search spaces , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[64]  Kenneth A. De Jong,et al.  Analyzing GAs Using Markov Models with Semantically Ordered and Lumped States , 1996, FOGA.

[65]  Paul M. B. Vitányi Genetic Fitness Optimization Using Rapidly Mixing Markov Chains , 1996, ALT.

[66]  G. Unter Rudolph Convergence Rates of Evolutionary Algorithms for a Class of Convex Objective Functions , 1997 .

[67]  Günter Rudolph,et al.  Asymptotical Convergence Rates of Simple Evolutionary Algorithms under Factorizing Mutation Distributions , 1997, Artificial Evolution.

[68]  Alexandru Agapie,et al.  Genetic Algorithms: Minimal Conditions for Convergence , 1997, Artificial Evolution.

[69]  Martin Hulin,et al.  An Optimal Stop Criterion for Genetic Algorithms: A Bayesian Approach , 1997, ICGA.

[70]  Isaac K. Evans,et al.  Enhancing recombination with the Complementary Surrogate Genetic Algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[71]  Werner Ebeling,et al.  EVOLUTIONARY STRATEGIES OF OPTIMIZATION , 1997 .

[72]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[73]  I. Wegener,et al.  A Rigorous Complexity Analysis Of The (1 + 1)- Evolution Strategy For Separable Functions With Boole , 1998 .

[74]  Günter Rudolph,et al.  Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets , 1998, Evolutionary Programming.

[75]  G. Unter Rudolph Local Convergence Rates of Simple Evolutionary Algorithms with Cauchy Mutations , 1998 .

[76]  Günter Rudolph,et al.  Theory of Evolutionary Algorithms: A Bird's Eye View , 1999, Theor. Comput. Sci..

[77]  Pedro Larrañaga,et al.  Genetic Algorithms: Bridging the Convergence Gap , 1999, Theor. Comput. Sci..

[78]  James P. Crutchfield,et al.  Statistical Dynamics of the Royal Road Genetic Algorithm , 1999, Theor. Comput. Sci..

[79]  Lishan Kang,et al.  On the Convergence Rates of Genetic Algorithms , 1999, Theor. Comput. Sci..

[80]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[81]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .