Finite Markov Chain Results in Evolutionary Computation: a Tour D'horizon
暂无分享,去创建一个
[1] K. Steiglitz,et al. Adaptive step size random search , 1968 .
[2] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[3] Luc Devroye,et al. On the Convergence of Statistical Search , 1976, IEEE Transactions on Systems, Man, and Cybernetics.
[4] U. G. Oppel,et al. Auf der Zufallssuche basierende Evolutionsprozesse , 1978 .
[5] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[6] Marius Iosifescu,et al. Finite Markov Processes and Their Applications , 1981 .
[7] Roger J.-B. Wets,et al. Minimization by Random Search Techniques , 1981, Math. Oper. Res..
[8] W. Ebeling,et al. Models of darwinian processes and evolutionary principles. , 1982, Bio Systems.
[9] J´nos Pintér,et al. Convergence properties of stochastic optimization procedures , 1984 .
[10] S. M. Ermakov,et al. On Random Search for a Global Extremum , 1984 .
[11] Georg Rappl,et al. Konvergenzraten von Random-Search-Verfahren zur globalen Optimierung , 1984 .
[12] Armin Scheel,et al. Beitrag zur Theorie der Evolutionsstrategie , 1985 .
[13] Mihalis Yannakakis,et al. How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[14] Peter L. Hammer,et al. From Linear Separability to Unimodality: A Hierarchy of Pseudo-Boolean Functions , 1988, SIAM J. Discret. Math..
[15] G. Rappl. On Linear Convergence of a Class of Random Search Algorithms , 1989 .
[16] Yves Crama,et al. Recognition problems for special classes of polynomials in 0–1 variables , 1989, Math. Program..
[17] van Km Kees Hee,et al. A general theory of genetic algorithms , 1989 .
[18] Pierre Priouret,et al. Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.
[19] A. E. Eiben,et al. Global Convergence of Genetic Algorithms: A Markov Chain Analysis , 1990, PPSN.
[20] Eugene Semenkin,et al. Optimization of unimodal monotone pseudoboolean functions , 1990, Kybernetika.
[21] Gunar E. Liepins,et al. Punctuated Equilibria in Genetic Search , 1991, Complex Syst..
[22] Avi Wigderson,et al. An Analysis of a Simple Genetic Algorithm , 1991, ICGA.
[23] A. A. Zhigli︠a︡vskiĭ,et al. Theory of Global Random Search , 1991 .
[24] Thomas Bäck,et al. The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.
[25] Heinz Mühlenbein,et al. Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.
[26] Hans-Paul Schwefel,et al. Evolutionary Programming and Evolution Strategies: Similarities and Differences , 1993 .
[27] Lalit M. Patnaik,et al. Binomially Distributed Populations for Modelling GAs , 1993, ICGA.
[28] Heinz Mühlenbein,et al. The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.
[29] S. Arunkumar,et al. Genetic search algorithms and their randomized operators , 1993 .
[30] Hans-Georg Beyer,et al. Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.
[31] José Carlos Príncipe,et al. A Markov Chain Framework for the Simple Genetic Algorithm , 1993, Evolutionary Computation.
[32] Thomas Bäck,et al. An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.
[33] Uday Kumar Chakraborty,et al. Using Reliability Analysis to Estimate the Number of Generations to Convergence in Genetic Algorithms , 1993, Inf. Process. Lett..
[34] Kalyanmoy Deb,et al. Long Path Problems , 1994, PPSN.
[35] D. Fogel. ASYMPTOTIC CONVERGENCE PROPERTIES OF GENETIC ALGORITHMS AND EVOLUTIONARY PROGRAMMING: ANALYSIS AND EXPERIMENTS , 1994 .
[36] Siddhartha Bhattacharyya,et al. An Analysis of Non-Binary Genetic Algorithms with Cardinality 2υ , 1994, Complex Syst..
[37] Hans-Georg Beyer,et al. Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.
[38] Prügel-Bennett,et al. Analysis of genetic algorithms using statistical mechanics. , 1994, Physical review letters.
[39] Kenneth A. De Jong,et al. Using Markov Chains to Analyze GAFOs , 1994, FOGA.
[40] Alden H. Wright,et al. Stability of Vertex Fixed Points and Applications , 1994, FOGA.
[41] Alden H. Wright,et al. Simple Genetic Algorithms with Linear Fitness , 1994, Evolutionary Computation.
[42] Günter Rudolph,et al. Convergence of non-elitist strategies , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[43] Raphaël Cerf,et al. A NEW GENETIC ALGORITHM , 1996 .
[44] Alden H. Wright,et al. Finiteness of the Fixed Point Set for the Simple Genetic Algorithm , 1995, Evolutionary Computation.
[45] H. Schwefel,et al. Analyzing (1; ) Evolution Strategy via Stochastic Approximation Methods , 1995 .
[46] Hans-Georg Beyer,et al. Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.
[47] H. Schwefel,et al. Establishing connections between evolutionary algorithms and stochastic approximation , 1995 .
[48] Atam P. Dhawan,et al. Genetic Algorithms as Global Random Search Methods: An Alternative Perspective , 1995, Evolutionary Computation.
[49] David E. Goldberg,et al. Parallel Recombinative Simulated Annealing: A Genetic Algorithm , 1995, Parallel Comput..
[50] B. Goertzel. A convergence theorem for the simple GA with population size tending to infinity , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.
[51] Hans-Georg Beyer,et al. Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.
[52] Joe Suzuki,et al. A Markov chain analysis on simple genetic algorithms , 1995, IEEE Trans. Syst. Man Cybern..
[53] Stefan Voget,et al. A Central Limit Theorem for the Population Process of Genetic Algorithms , 1995, Complex Syst..
[54] Alden H. Wright,et al. A Search for Counterexamples to Two Conjectures on the Simple Genetic Algorithm , 1996, FOGA.
[55] Gary J. Koehler. Diagonalizing the Simple GA Mixing Matrix , 1996, FOGA.
[56] Haldun Aytug,et al. Stopping Criteria for Finite Length Genetic Algorithms , 1996, INFORMS J. Comput..
[57] Günter Rudolph,et al. How Mutation and Selection Solve Long-Path Problems in Polynomial Expected Time , 1996, Evolutionary Computation.
[58] Joe Suzuki,et al. A Further Result on the Markov Chain Model of Genetic Algorithms and Its Application to a Simulated Annealing-like Strategy , 1998, FOGA.
[59] Adam Prügel-Bennett,et al. Genetic Algorithm Dynamics in a Two-well Potential , 1996, FOGA.
[60] T. Asselmeyer. Uniied Description of Evolutionary Strategies over Continous Parameter Spaces , 1996 .
[61] R. Cerf. The dynamics of mutation-selection algorithms with large population sizes , 1996 .
[62] Stefan Voget. Theoretical Analysis of Genetic Algorithms with Infinite Population Size , 1996, Complex Syst..
[63] Günter Rudolph,et al. Convergence of evolutionary algorithms in general search spaces , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[64] Kenneth A. De Jong,et al. Analyzing GAs Using Markov Models with Semantically Ordered and Lumped States , 1996, FOGA.
[65] Paul M. B. Vitányi. Genetic Fitness Optimization Using Rapidly Mixing Markov Chains , 1996, ALT.
[66] G. Unter Rudolph. Convergence Rates of Evolutionary Algorithms for a Class of Convex Objective Functions , 1997 .
[67] Günter Rudolph,et al. Asymptotical Convergence Rates of Simple Evolutionary Algorithms under Factorizing Mutation Distributions , 1997, Artificial Evolution.
[68] Alexandru Agapie,et al. Genetic Algorithms: Minimal Conditions for Convergence , 1997, Artificial Evolution.
[69] Martin Hulin,et al. An Optimal Stop Criterion for Genetic Algorithms: A Bayesian Approach , 1997, ICGA.
[70] Isaac K. Evans,et al. Enhancing recombination with the Complementary Surrogate Genetic Algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).
[71] Werner Ebeling,et al. EVOLUTIONARY STRATEGIES OF OPTIMIZATION , 1997 .
[72] G. Rudolph. On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
[73] I. Wegener,et al. A Rigorous Complexity Analysis Of The (1 + 1)- Evolution Strategy For Separable Functions With Boole , 1998 .
[74] Günter Rudolph,et al. Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets , 1998, Evolutionary Programming.
[75] G. Unter Rudolph. Local Convergence Rates of Simple Evolutionary Algorithms with Cauchy Mutations , 1998 .
[76] Günter Rudolph,et al. Theory of Evolutionary Algorithms: A Bird's Eye View , 1999, Theor. Comput. Sci..
[77] Pedro Larrañaga,et al. Genetic Algorithms: Bridging the Convergence Gap , 1999, Theor. Comput. Sci..
[78] James P. Crutchfield,et al. Statistical Dynamics of the Royal Road Genetic Algorithm , 1999, Theor. Comput. Sci..
[79] Lishan Kang,et al. On the Convergence Rates of Genetic Algorithms , 1999, Theor. Comput. Sci..
[80] Russ Bubley,et al. Randomized algorithms , 1995, CSUR.
[81] Schloss Birlinghoven,et al. How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .