Practical animation of compressible flow for shock waves and related phenomena

We propose a practical approach to integrating shock wave dynamics into traditional smoke simulations. Previous methods either simplify away the compressible component of the flow and are unable to capture shock fronts or use a prohibitively expensive explicit method that limits the time step of the simulation long after the relevant shock waves and rarefactions have left the domain. Instead, we employ a semi-implicit formulation of Euler's equations, which allows us to take time steps on the order of the fluid velocity (ignoring the more stringent acoustic wave-speed restrictions) and avoids the expensive characteristic decomposition typically required of compressible flow solvers. We also propose an extension to Euler's equations to model combustion of fuel in explosions. The flow is two-way coupled with rigid and deformable solid bodies, treating the solid-fluid interface effects implicitly in a projection step by enforcing a velocity boundary condition on the fluid and integrating pressure forces along the solid surface. As we handle the acoustic fluid effects implicitly, we can artificially drive the sound speed c of the fluid to ∞ without going unstable or driving the time step to zero. This permits the fluid to transition from compressible flow to the far more tractable incompressible flow regime once the interesting compressible flow phenomena (such as shocks) have left the domain of interest, and allows the use of state-of-the-art smoke simulation techniques.

[1]  Oleg Mazarak,et al.  Animating Exploding Objects , 1999, Graphics Interface.

[2]  T. Dupont,et al.  Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function , 2003 .

[3]  Jessica K. Hodgins,et al.  Animating explosions , 2000, SIGGRAPH.

[4]  James F. O'Brien,et al.  Simultaneous coupling of fluids and deformable bodies , 2006, SCA '06.

[5]  Ming C. Lin,et al.  Visual simulation of shockwaves , 2008, SCA '08.

[6]  Insung Ihm,et al.  Animation of reactive gaseous fluids through chemical kinetics , 2004, SCA '04.

[7]  Ignacio Llamas,et al.  FlowFixer: Using BFECC for Fluid Simulation , 2005, NPH.

[8]  Ronald Fedkiw,et al.  A method for avoiding the acoustic time step restriction in compressible flow , 2009, J. Comput. Phys..

[9]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[10]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[11]  James Lighthill,et al.  Waves In Fluids , 1966 .

[12]  Insung Ihm,et al.  Animation of chemically reactive fluids using a hybrid simulation method , 2007, SCA '07.

[13]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[14]  James F. O'Brien,et al.  Animating suspended particle explosions , 2003, ACM Trans. Graph..

[15]  Ronald Fedkiw,et al.  Energy stability and fracture for frame rate rigid body simulations , 2009, SCA '09.

[16]  Norishige Chiba,et al.  Particle-based visual simulation of explosive flames , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[17]  Ronald Fedkiw,et al.  Wrinkled flames and cellular patterns , 2007, SIGGRAPH 2007.

[18]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[19]  J. Steinhoff,et al.  Modification of the Euler equations for ‘‘vorticity confinement’’: Application to the computation of interacting vortex rings , 1994 .

[20]  Ming C. Lin,et al.  Fast Fluid Simulation Using Residual Distribution Schemes , 2007, NPH.

[21]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[22]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[23]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[24]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, SIGGRAPH 2006.

[25]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[26]  Duc Quang Nguyen,et al.  Smoke simulation for large scale phenomena , 2003, ACM Trans. Graph..

[27]  Dimitris N. Metaxas,et al.  Controlling fluid animation , 1997, Proceedings Computer Graphics International.

[28]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[29]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..

[30]  Michael Neff,et al.  A Visual Model For Blast Waves and Francture , 1999, Graphics Interface.

[31]  Tomoyuki Nishita,et al.  A fast method for simulating destruction and the generated dust and debris , 2009, The Visual Computer.

[32]  Ken Museth,et al.  Hierarchical RLE level set: A compact and versatile deformable surface representation , 2006, TOGS.

[33]  Andrew Selle,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[34]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[35]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[36]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.