On a connection between a class of q-deformed algebras and the Hausdorff derivative in a medium with fractal metric

Over the recent decades, diverse formalisms have emerged that are adopted to approach complex systems. Amongst those, we may quote the q-calculus in Tsallis’ version of Non-Extensive Statistics with its undeniable success whenever applied to a wide class of different systems; Kaniadakis’ approach, based on the compatibility between relativity and thermodynamics; Fractional Calculus (FC), that deals with the dynamics of anomalous transport and other natural phenomena, and also some local versions of FC that claim to be able to study fractal and multifractal spaces and to describe dynamics in these spaces by means of fractional differential equations.

[1]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[2]  K. Svozil Quantum field theory on fractal spacetime: a new regularisation method , 1987 .

[3]  G. Calcagni Geometry of fractional spaces , 2011, 1106.5787.

[4]  E. Scalas,et al.  Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Aleksander Stanislavsky,et al.  Subordination model of anomalous diffusion leading to the two-power-law relaxation responses , 2010, 1111.3014.

[6]  C. Godinho,et al.  Constrained Systems in a Coarse-Grained Scenario , 2012 .

[7]  T. Nonnenmacher,et al.  Fractional integral operators and Fox functions in the theory of viscoelasticity , 1991 .

[8]  Dumitru Baleanu,et al.  About fractional quantization and fractional variational principles , 2009 .

[9]  Kiran M. Kolwankar,et al.  Fractional differentiability of nowhere differentiable functions and dimensions. , 1996, Chaos.

[10]  P. Grigolini,et al.  Fractional calculus as a macroscopic manifestation of randomness , 1999 .

[11]  Gianluca Calcagni,et al.  Geometry and field theory in multi-fractional spacetime , 2011, 1107.5041.

[12]  Guy Jumarie,et al.  On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling , 2013 .

[13]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[14]  Kewei Zhang,et al.  On the local fractional derivative , 2010 .

[15]  K. Stevens The Wave Mechanical Damped Harmonic Oscillator , 1958 .

[16]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[17]  Zeilinger,et al.  Measuring the dimension of space time. , 1985, Physical review letters.

[18]  Guy Jumarie,et al.  From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series , 2009 .

[19]  H. Kleinert Fractional quantum field theory, path integral, and stochastic differential equation for strongly interacting many-particle systems , 2012, 1210.2630.

[20]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[21]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[22]  Frank H. Stillinger,et al.  Axiomatic basis for spaces with noninteger dimension , 1977 .

[23]  Hongguang Sun,et al.  Anomalous diffusion modeling by fractal and fractional derivatives , 2010, Comput. Math. Appl..

[24]  G. Eyink Quantum field-theory models on fractal spacetime , 1989 .

[25]  R. Herrmann q-Deformed Lie Algebras and Fractional Calculus , 2007, Fractional Calculus.

[26]  Ernesto P. Borges,et al.  Generalized space and linear momentum operators in quantum mechanics , 2013, 1305.6307.

[27]  R. Blatt,et al.  Quantum simulation of the Dirac equation , 2009, Nature.

[28]  Functional characterization of generalized Langevin equations , 2004, cond-mat/0402311.

[29]  Laurent Nottale,et al.  Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .

[30]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[31]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[32]  Varsha Daftardar-Gejji,et al.  On calculus of local fractional derivatives , 2002 .

[33]  E. Abreu,et al.  Fractional Dirac bracket and quantization for constrained systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Alberto Giuseppe Sapora,et al.  Diffusion problems in fractal media defined on Cantor sets , 2010 .

[35]  S. Kruglov Maxwell–Chern–Simons Topologically Massive Gauge Fields in the First-Order Formalism , 2010, 1010.4728.

[36]  Ervin Goldfain Derivation of lepton masses from the chaotic regime of the linear σ-model , 2002 .

[37]  I. Podlubny Fractional differential equations , 1998 .

[38]  Paul N. Stavrinou,et al.  Equations of motion in a non-integer-dimensional space , 2004 .

[39]  J. Klafter,et al.  Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .

[40]  J. Weberszpil,et al.  Anomalous g-Factors for Charged Leptons in a Fractional Coarse-Grained Approach , 2013, 1306.5314.

[41]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..

[43]  R. Metzler,et al.  Relaxation in filled polymers: A fractional calculus approach , 1995 .

[44]  Rudolf Hilfer,et al.  Experimental evidence for fractional time evolution in glass forming materials , 2002 .

[45]  Guy Jumarie,et al.  Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution , 2007 .

[46]  H. Srivastava,et al.  Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives , 2013 .

[47]  Guy Jumarie,et al.  An approach to differential geometry of fractional order via modified Riemann-Liouville derivative , 2012 .

[48]  The variant of post-Newtonian mechanics with generalized fractional derivatives. , 2006, Chaos.

[49]  Guy Jumarie,et al.  Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton's optimal portfolio , 2010, Comput. Math. Appl..

[50]  Mohamed A. E. Herzallah,et al.  Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations , 2009 .

[51]  Ernesto P. Borges A possible deformed algebra and calculus inspired in nonextensive thermostatistics , 2003, cond-mat/0304545.

[52]  G. Calcagni,et al.  Varying electric charge in multiscale spacetimes , 2013, 1305.3497.

[53]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[54]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[55]  G. Calcagni Fractal universe and quantum gravity. , 2009, Physical review letters.

[56]  G. Kaniadakis,et al.  Non-linear kinetics underlying generalized statistics , 2001 .

[57]  The Zitterbewegung of the neutrino , 1984 .

[58]  Anthony J Leggett,et al.  Influence of Dissipation on Quantum Tunneling in Macroscopic Systems , 1981 .

[59]  Gianluca Calcagni,et al.  Probing the quantum nature of spacetime by diffusion , 2013, 1304.7247.

[60]  Constantino Tsallis,et al.  Nonadditive entropy and nonextensive statistical mechanics - An overview after 20 years , 2009 .

[61]  Robert C. Earnshaw,et al.  Brownian motion : theory, modelling and applications , 2012 .

[62]  Grabert,et al.  Dissipative quantum systems with a potential barrier: General theory and the parabolic barrier. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  V. E. Tarasov Fractional hydrodynamic equations for fractal media , 2005, physics/0602096.

[64]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[65]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[66]  A. Balankin,et al.  Hydrodynamics of fractal continuum flow. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Kiran M. Kolwankar,et al.  Local Fractional Fokker-Planck Equation , 1998 .

[68]  A. Balankin,et al.  Map of fluid flow in fractal porous medium into fractal continuum flow. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[70]  NON-BOLTZMANN STATISTICS AS AN ALTERNATIVE TO HOLOGRAPHY , 2005, gr-qc/0504004.