Positive polynomials and sums of squares

Preliminaries Positive polynomials and sums of square Krivine's Positivstellensatz The moment problem Non-compact case Archimedean $T$-modules Schmudgen's Positivstellensatz Putinar's question Weak isotropy of quadratic forms Scheiderer's local-global principle Semidefinite programming and optimization Appendix 1: Tarski-Seidenberg theorem Appendix 2: Algebraic sets Bibiography.

[1]  E. Artin,et al.  Algebraische Konstruktion reeller Körper , 1927 .

[2]  E. Artin Über die Zerlegung definiter Funktionen in Quadrate , 1927 .

[3]  Arthur B. Coble Algebraic geometry and theta functions , 1929 .

[4]  M. Stone,et al.  A General Theory of Spectra. I: I. , 1940, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. J. Walker Algebraic curves , 1950 .

[6]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[7]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[8]  A. Pfister Multiplikative quadratische Formen , 1965 .

[9]  Y. Pourchet,et al.  Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques , 1971 .

[10]  Ludwig Bröcker Zur Theorie der quadratischen Formen über formal reellen Körpern , 1974 .

[11]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[12]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[13]  Christian Berg,et al.  A remark on the multidimensional moment problem , 1979 .

[14]  Konrad Schmüdgen An Example of a Positive Polynomial which is not a Sum of Squares of Polynomials A Positive, but not Strongly Positive Functional , 1979 .

[15]  G. Cassier,et al.  Problème des moments sur un compact de Rn et décomposition de polynômes a plusieurs variables , 1984 .

[16]  W. Scharlau,et al.  Quadratic and Hermitian Forms , 1984 .

[17]  Reduced forms and reduced Witt rings of higher level , 1985 .

[18]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[19]  M-F Roy,et al.  Géométrie algébrique réelle , 1987 .

[20]  C. Berg The multidimensional moment problem and semi-groups , 1987 .

[21]  D. Handelman Representing polynomials by positive linear functions on compact convex polyhedra. , 1988 .

[22]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[23]  B. Reznick Sums of Even Powers of Real Linear Forms , 1992 .

[24]  J. Ruiz The Basic Theory of Power Series , 1993 .

[25]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[26]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[27]  B. Reznick Uniform denominators in Hilbert's seventeenth problem , 1995 .

[28]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[29]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[30]  N. Z. Shor,et al.  Modifiedr-algorithm to find the global minimum of polynomial functions , 1997 .

[31]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[32]  Claus Scheiderer,et al.  Sums of squares of regular functions on real algebraic varieties , 2000 .

[33]  Walter Rudin,et al.  Sums of Squares of Polynomials , 2000, Am. Math. Mon..

[34]  Charles N. Delzell,et al.  Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .

[35]  A. Prestel,et al.  Distinguished representations of strictly positive polynomials , 2001 .

[36]  B. Reznick,et al.  A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra , 2001 .

[37]  T. Jacobi A representation theorem for certain partially ordered commutative rings , 2001 .

[38]  T. Wörmann,et al.  Positive polynomials on compact sets , 2001 .

[39]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[40]  Victoria Powers,et al.  The moment problem for non-compact semialgebraic sets , 2001 .

[41]  Salma Kuhlmann,et al.  Positivity, sums of squares and the multi-dimensional moment problem , 2002 .

[42]  Etienne de Klerk,et al.  Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..

[43]  M. Coste AN INTRODUCTION TO SEMIALGEBRAIC GEOMETRY , 2002 .

[44]  Markus Schweighofer,et al.  An algorithmic approach to Schmudgen's Positivstellensatz , 2002 .

[45]  Bruce Reznick On the absence of uniform denominators in Hilbert's 17th problem , 2003 .

[46]  Grigoriy Blekherman There are significantly more nonegative polynomials than sums of squares , 2003, math/0309130.

[47]  Claus Scheiderer,et al.  Sums of squares on real algebraic curves , 2003 .

[48]  Extensions de corps ordonnés , 2003 .

[49]  Sums of squares in real rings , 2003 .

[50]  P. Parrilo,et al.  Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.

[51]  Frank Sottile,et al.  A new approach to Hilbert's theorem on ternary quartics , 2004 .

[52]  Markus Schweighofer,et al.  On the complexity of Schmu"dgen's Positivstellensatz , 2004, J. Complex..

[53]  A Kadison¿Dubois representation for associative rings , 2004 .

[54]  Markus Schweighofer,et al.  Optimization of Polynomials on Compact Semialgebraic Sets , 2005, SIAM J. Optim..

[55]  Claus Scheiderer,et al.  Distinguished representations of non-negative polynomials , 2005 .

[56]  Claus Scheiderer,et al.  Non-existence of degree bounds for weighted sums of squares representations , 2005, J. Complex..

[57]  Salma Kuhlmann,et al.  Positivity, sums of squares and the multi-dimensional moment problem II ⁄ , 2005 .

[58]  Victoria Powers,et al.  A quantitative Pólya's Theorem with corner zeros , 2006, ISSAC '06.

[59]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations in Polynomial Optimization with Sparsity , 2006, SIAM J. Optim..

[60]  Claus Scheiderer,et al.  Sums of squares on real algebraic surfaces , 2006 .

[61]  David Grimm,et al.  A note on the representation of positive polynomials with structured sparsity , 2006, math/0611498.

[62]  Markus Schweighofer Global Optimization of Polynomials Using Gradient Tentacles and Sums of Squares , 2006, SIAM J. Optim..

[63]  James Demmel,et al.  Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..

[64]  Markus Schweighofer,et al.  On the complexity of Putinar's Positivstellensatz , 2005, J. Complex..

[65]  Monique Laurent,et al.  Semidefinite representations for finite varieties , 2007, Math. Program..

[66]  Bruce Reznick,et al.  On Hilbert's construction of positive polynomials , 2007, 0707.2156.

[67]  D. Plaumann Sums of squares on reducible real curves , 2008, 0808.0460.

[68]  Bin Li,et al.  Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars , 2008, ISSAC '08.

[69]  Tim Netzer Stability of quadratic modules , 2008, 0807.4403.

[70]  Pablo A. Parrilo,et al.  Computing sum of squares decompositions with rational coefficients , 2008 .

[71]  Claus Scheiderer,et al.  Sums of squares and moment problems in equivariant situations , 2008, 0808.0034.

[72]  Markus Schweighofer,et al.  Pure states, nonnegative polynomials, and sums of squares , 2009, 0905.4161.

[73]  Victoria Powers,et al.  A quantitative Pólya's Theorem with zeros , 2009, J. Symb. Comput..

[74]  M. Marshall Polynomials non-negative on a strip , 2009 .

[75]  Marie-Françoise Roy,et al.  A bound on the minimum of a real positive polynomial over the standard simplex , 2009, ArXiv.

[76]  Victoria Powers,et al.  Rational certificates of positivity on compact semialgebraic sets , 2009, 0911.1331.

[77]  Masakazu Muramatsu,et al.  A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones , 2009, Comput. Optim. Appl..

[78]  Erich Kaltofen,et al.  A proof of the monotone column permanent (MCP) conjecture for dimension 4 via sums-of-squares of rational functions , 2009, SNC '09.

[79]  C. Scheiderer Weighted sums of squares in local rings and their completions, I , 2010 .

[80]  Bernd Sturmfels,et al.  The algebraic degree of semidefinite programming , 2010, Math. Program..

[81]  Daniel Perrucci,et al.  On the minimum of a positive polynomial over the standard simplex , 2009, J. Symb. Comput..