Positive polynomials and sums of squares
暂无分享,去创建一个
[1] E. Artin,et al. Algebraische Konstruktion reeller Körper , 1927 .
[2] E. Artin. Über die Zerlegung definiter Funktionen in Quadrate , 1927 .
[3] Arthur B. Coble. Algebraic geometry and theta functions , 1929 .
[4] M. Stone,et al. A General Theory of Spectra. I: I. , 1940, Proceedings of the National Academy of Sciences of the United States of America.
[5] R. J. Walker. Algebraic curves , 1950 .
[6] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[7] A. Seidenberg. A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .
[8] A. Pfister. Multiplikative quadratische Formen , 1965 .
[9] Y. Pourchet,et al. Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques , 1971 .
[10] Ludwig Bröcker. Zur Theorie der quadratischen Formen über formal reellen Körpern , 1974 .
[11] N. Jacobson,et al. Basic Algebra I , 1976 .
[12] G. Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .
[13] Christian Berg,et al. A remark on the multidimensional moment problem , 1979 .
[14] Konrad Schmüdgen. An Example of a Positive Polynomial which is not a Sum of Squares of Polynomials A Positive, but not Strongly Positive Functional , 1979 .
[15] G. Cassier,et al. Problème des moments sur un compact de Rn et décomposition de polynômes a plusieurs variables , 1984 .
[16] W. Scharlau,et al. Quadratic and Hermitian Forms , 1984 .
[17] Reduced forms and reduced Witt rings of higher level , 1985 .
[18] N. Z. Shor. Class of global minimum bounds of polynomial functions , 1987 .
[19] M-F Roy,et al. Géométrie algébrique réelle , 1987 .
[20] C. Berg. The multidimensional moment problem and semi-groups , 1987 .
[21] D. Handelman. Representing polynomials by positive linear functions on compact convex polyhedra. , 1988 .
[22] K. Schmüdgen. TheK-moment problem for compact semi-algebraic sets , 1991 .
[23] B. Reznick. Sums of Even Powers of Real Linear Forms , 1992 .
[24] J. Ruiz. The Basic Theory of Power Series , 1993 .
[25] T. Stieltjes. Recherches sur les fractions continues , 1995 .
[26] B. Reznick,et al. Sums of squares of real polynomials , 1995 .
[27] B. Reznick. Uniform denominators in Hilbert's seventeenth problem , 1995 .
[28] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[29] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[30] N. Z. Shor,et al. Modifiedr-algorithm to find the global minimum of polynomial functions , 1997 .
[31] V. Powers,et al. An algorithm for sums of squares of real polynomials , 1998 .
[32] Claus Scheiderer,et al. Sums of squares of regular functions on real algebraic varieties , 2000 .
[33] Walter Rudin,et al. Sums of Squares of Polynomials , 2000, Am. Math. Mon..
[34] Charles N. Delzell,et al. Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .
[35] A. Prestel,et al. Distinguished representations of strictly positive polynomials , 2001 .
[36] B. Reznick,et al. A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra , 2001 .
[37] T. Jacobi. A representation theorem for certain partially ordered commutative rings , 2001 .
[38] T. Wörmann,et al. Positive polynomials on compact sets , 2001 .
[39] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[40] Victoria Powers,et al. The moment problem for non-compact semialgebraic sets , 2001 .
[41] Salma Kuhlmann,et al. Positivity, sums of squares and the multi-dimensional moment problem , 2002 .
[42] Etienne de Klerk,et al. Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..
[43] M. Coste. AN INTRODUCTION TO SEMIALGEBRAIC GEOMETRY , 2002 .
[44] Markus Schweighofer,et al. An algorithmic approach to Schmudgen's Positivstellensatz , 2002 .
[45] Bruce Reznick. On the absence of uniform denominators in Hilbert's 17th problem , 2003 .
[46] Grigoriy Blekherman. There are significantly more nonegative polynomials than sums of squares , 2003, math/0309130.
[47] Claus Scheiderer,et al. Sums of squares on real algebraic curves , 2003 .
[48] Extensions de corps ordonnés , 2003 .
[49] Sums of squares in real rings , 2003 .
[50] P. Parrilo,et al. Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.
[51] Frank Sottile,et al. A new approach to Hilbert's theorem on ternary quartics , 2004 .
[52] Markus Schweighofer,et al. On the complexity of Schmu"dgen's Positivstellensatz , 2004, J. Complex..
[53] A Kadison¿Dubois representation for associative rings , 2004 .
[54] Markus Schweighofer,et al. Optimization of Polynomials on Compact Semialgebraic Sets , 2005, SIAM J. Optim..
[55] Claus Scheiderer,et al. Distinguished representations of non-negative polynomials , 2005 .
[56] Claus Scheiderer,et al. Non-existence of degree bounds for weighted sums of squares representations , 2005, J. Complex..
[57] Salma Kuhlmann,et al. Positivity, sums of squares and the multi-dimensional moment problem II ⁄ , 2005 .
[58] Victoria Powers,et al. A quantitative Pólya's Theorem with corner zeros , 2006, ISSAC '06.
[59] Jean B. Lasserre,et al. Convergent SDP-Relaxations in Polynomial Optimization with Sparsity , 2006, SIAM J. Optim..
[60] Claus Scheiderer,et al. Sums of squares on real algebraic surfaces , 2006 .
[61] David Grimm,et al. A note on the representation of positive polynomials with structured sparsity , 2006, math/0611498.
[62] Markus Schweighofer. Global Optimization of Polynomials Using Gradient Tentacles and Sums of Squares , 2006, SIAM J. Optim..
[63] James Demmel,et al. Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..
[64] Markus Schweighofer,et al. On the complexity of Putinar's Positivstellensatz , 2005, J. Complex..
[65] Monique Laurent,et al. Semidefinite representations for finite varieties , 2007, Math. Program..
[66] Bruce Reznick,et al. On Hilbert's construction of positive polynomials , 2007, 0707.2156.
[67] D. Plaumann. Sums of squares on reducible real curves , 2008, 0808.0460.
[68] Bin Li,et al. Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars , 2008, ISSAC '08.
[69] Tim Netzer. Stability of quadratic modules , 2008, 0807.4403.
[70] Pablo A. Parrilo,et al. Computing sum of squares decompositions with rational coefficients , 2008 .
[71] Claus Scheiderer,et al. Sums of squares and moment problems in equivariant situations , 2008, 0808.0034.
[72] Markus Schweighofer,et al. Pure states, nonnegative polynomials, and sums of squares , 2009, 0905.4161.
[73] Victoria Powers,et al. A quantitative Pólya's Theorem with zeros , 2009, J. Symb. Comput..
[74] M. Marshall. Polynomials non-negative on a strip , 2009 .
[75] Marie-Françoise Roy,et al. A bound on the minimum of a real positive polynomial over the standard simplex , 2009, ArXiv.
[76] Victoria Powers,et al. Rational certificates of positivity on compact semialgebraic sets , 2009, 0911.1331.
[77] Masakazu Muramatsu,et al. A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones , 2009, Comput. Optim. Appl..
[78] Erich Kaltofen,et al. A proof of the monotone column permanent (MCP) conjecture for dimension 4 via sums-of-squares of rational functions , 2009, SNC '09.
[79] C. Scheiderer. Weighted sums of squares in local rings and their completions, I , 2010 .
[80] Bernd Sturmfels,et al. The algebraic degree of semidefinite programming , 2010, Math. Program..
[81] Daniel Perrucci,et al. On the minimum of a positive polynomial over the standard simplex , 2009, J. Symb. Comput..