What is negative refraction?

We review various published definitions associated with the phenomenon of negative phase velocity propagation of electromagnetic waves in meta-media, as observed through negative refraction. For the principal definition, based on the Poynting vector and the wave vector having negative scalar product, we summarise the various material constraints that have been derived. The distinction between criteria based on the Poynting vector and the group velocity are considered, both in respect of causality, and in the context of moving media. Instances where a fully covariant definition is necessary are also identified, and compared with other results from the extant literature. Satisfaction of the NPV propagation criterion is also considered for surface plasmons.

[1]  A. Lakhtakia,et al.  A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity , 2003 .

[2]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[3]  Gravitation and electromagnetic wave propagation with negative phase velocity , 2004, physics/0410265.

[4]  A. Lakhtakia,et al.  Comment on "criterion for negative refraction with low optical losses from a fundamental principle of causality". , 2007, Physical review letters.

[5]  A. Lakhtakia,et al.  Plane waves with negative phase velocity in Faraday chiral mediums. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  K. Tsakmakidis,et al.  ‘Trapped rainbow’ storage of light in metamaterials , 2007, Nature.

[7]  Counterposition and negative refraction due to uniform motion , 2006, physics/0610039.

[8]  J. Kong,et al.  Electrodynamics of moving media inducing positive and negative refraction , 2006 .

[9]  B. M. Fulk MATH , 1992 .

[10]  Tom G. Mackay,et al.  Negative phase velocity in a uniformly moving, homogeneous, isotropic, dielectric-magnetic medium , 2004 .

[11]  George C. Sherman,et al.  Electromagnetic Pulse Propagation in Causal Dielectrics , 1994 .

[12]  Mark I. Stockman,et al.  Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality , 2007 .

[13]  D. Smith,et al.  Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. , 2002, Physical Review Letters.

[14]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[15]  T. Mackay,et al.  Response to ‘On negative refraction in classical vacuum’ , 2008 .

[16]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[17]  C. Paiva,et al.  Transformation and Moving Media: A Unified Approach Using Geometric Algebra , 2009 .

[18]  Criteria for negative refraction in active and passive media , 2008 .

[19]  J. Plebański,et al.  Electromagnetic Waves in Gravitational Fields , 1960 .

[20]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[21]  W. S. Weiglhofer,et al.  The negative index of refraction demystified , 2002 .

[22]  A. Lakhtakia,et al.  Reply to 'Comment on 'Towards gravitationally assisted negative refraction of light by vacuum'' , 2005 .

[23]  Cécile Jamois,et al.  Surface plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability , 2006 .

[24]  Martin W. McCall,et al.  Relativity and mathematical tools: Waves in moving media , 2007 .

[25]  Negative phase velocity of electromagnetic waves and the cosmological constant , 2004, astro-ph/0411754.

[26]  Johannes Skaar On resolving the refractive index and the wave vector. , 2006, Optics letters.

[27]  Martin W. McCall,et al.  Negative Phase-Velocity Mediums , 2003 .

[28]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[29]  D. Smith,et al.  Comment on "Wave refraction in negative-index media: always positive and very inhomogeneous". , 2003, Physical review letters.

[30]  Graeme Dewar Applicability of ferrimagnetic hosts to nanostructured negative index of refraction (left-handed) materials , 2002, SPIE Optics + Photonics.

[31]  Fresnel equations and the refractive index of active media. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Allan D. Boardman,et al.  Negative Refraction in Perspective , 2005 .

[33]  Friedrich W. Hehl,et al.  Foundations of Classical Electrodynamics , 2003 .

[34]  On negative refraction in classical vacuum , 2007 .

[35]  C. R. Mann The Theory of Optics , 1903, Nature.

[36]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[37]  M. McCall,et al.  EMCON 4 Four Poynting theorems Dr , 2009 .

[38]  Martin W. McCall,et al.  What is negative refraction? , 2009, NanoScience + Engineering.

[39]  Vadim A. Markel,et al.  Correct definition of the Poynting vector in electrically and magnetically polarizable medium reveals that negative refraction is impossible. , 2007, Optics express.

[40]  R M Walser,et al.  Wave refraction in negative-index media: always positive and very inhomogeneous. , 2002, Physical review letters.

[41]  Vinet,et al.  Guided optical waves in planar heterostructures with negative dielectric constant. , 1991, Physical review. B, Condensed matter.

[42]  A. Lakhtakia,et al.  Electromagnetic negative-phase-velocity propagation in the ergosphere of a rotating black hole , 2005 .

[43]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[44]  Ari Sihvola,et al.  Negative‐definite media, a class of bi‐anisotropic metamaterials , 2006 .

[45]  A comparison of superradiance and negative phase velocity phenomenons in the ergosphere of a rotating black hole , 2005, astro-ph/0504351.

[46]  Electromagnetic waves with negative phase velocity in Schwarzschild-de Sitter spacetime , 2005, astro-ph/0503142.

[47]  M. McCall,et al.  Classical gravity does not refract negatively. , 2007, Physical review letters.

[48]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[49]  Ismo V. Lindell,et al.  Differential Forms in Electromagnetics , 2004 .

[50]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[51]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[52]  A. Mascarenhas,et al.  Total negative refraction in real crystals for ballistic electrons and light. , 2003, Physical review letters.

[53]  M. McCall A covariant theory of negative phase velocity propagation , 2008 .

[54]  M. McCall,et al.  Causality-based criteria for a negative refractive index must be used with care. , 2008, Physical review letters.

[55]  P. Ben-Abdallah Propagation of light inside shear flows: a remote sensing method to retrieve velocity fields , 2002 .

[56]  A. Lakhtakia,et al.  Global and local perspectives of gravitationally assisted negative-phase-velocity propagation of electromagnetic waves in vacuum , 2004, physics/0409159.

[57]  Ian J. Hodgkinson,et al.  Complex Mediums III: Beyond Linear Isotropic Dielectrics , 2001 .

[58]  Sergei A. Tretyakov,et al.  BW media—media with negative parameters, capable of supporting backward waves , 2001 .

[59]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[60]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[61]  Tom G. Mackay,et al.  Positive-, negative-, and orthogonal-phase-velocity propagation of electromagnetic plane waves in a simply moving medium , 2007 .

[62]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[63]  U. Leonhardt,et al.  General relativity in electrical engineering , 2006, SPIE Optics + Optoelectronics.

[64]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.